Educational Studies in Mathematics

, Volume 90, Issue 1, pp 39–56 | Cite as

Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education

  • Jo Van Hoof
  • Lieven Verschaffel
  • Wim Van Dooren


The natural number bias is known to explain many difficulties learners have with understanding rational numbers. The research field distinguishes three aspects where natural number properties are sometimes inappropriately applied in rational number tasks: density, size, and operations. The overall goal of this study was to characterize the development of the natural number bias across the span between 4th and 12th grade. To achieve this goal, a comprehensive test was constructed to test 4th to 12th graders’ natural number bias. This test was administered to 1343 elementary and secondary school students. Results showed that an overall natural number bias could be found. This bias appeared to be equally strong in tasks with decimal numbers and tasks with fractions. Moreover, the natural number bias was weakest in size tasks, somewhat stronger in operations tasks, and by far the strongest in density tasks. An overall decrease of the strength of the natural number bias—but no disappearance except for size tasks—could be found with grade.


Rational number Fraction Natural number bias Primary education Secondary education 


  1. Clarke, D. M., & Roche, A. (2009). Students’ fraction comparison strategies as a window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72, 127–138. doi: 10.10007/s10649-009-9198-9
  2. Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth- grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33, 111–144.CrossRefGoogle Scholar
  3. De Wolf, M., & Vosniadou, S. (2011). The whole number bias in fraction magnitude comparisons with adults. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 1751–1756). Austin: Cognitive Science Society.Google Scholar
  4. Debou, E., & Verschetze, L. (2012). De overgang van natuurlijke naar rationale getallen. Een curriculumanalyse van drie Vlaamse wiskundemethoden [From natural to rational numbers. A curriculum analysis of 3 Flemish mathematics textbooks] (Unpublished master's thesis). Belgium: Katholieke Universiteit Leuven, Faculteit Psychologie en Pedagogische Wetenschappen.Google Scholar
  5. Gabriel, F., Coché, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2013). A componential view of children’s difficulties in learning fractions. Frontiers in Psychology, 4, 1–12. doi: 10.3389/fpsyg.2013.00715 Google Scholar
  6. Gómez, D., Jiménez, A., Bobadilla, R., Reyes, C., & Dartnell, P. (2014). Exploring fraction comparison in school children. Enero, 10, 1–10.Google Scholar
  7. Greer, B. (2004). The growth of mathematics through conceptual restructuring. Learning and Instruction, 14, 541–548. doi: 10.1016/j.learninstruc.2004.06.018 CrossRefGoogle Scholar
  8. Hasemann, C. (1981). On difficulties with fractions. Educational Studies in Mathematics, 12, 171–187. doi: 10.1007/BF00386047 CrossRefGoogle Scholar
  9. Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. doi: 10.1093/biomet/73.1.13 CrossRefGoogle Scholar
  10. Mamede, E., Nunes, T., & Bryant, P. (2005). The equivalence and ordering of fractions in part-whole and quotient situations. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th conference of the International Group for the Psychology of Mathematics Education: Vol. 3. (pp. 281–288). Melbourne, Australia: PME.Google Scholar
  11. Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and ‘holes’: Gaps in rational number sense among children with vs. without mathematical learning disabilities. Developmental Science, 11, 681–691. doi: 10.1111/j.1467-7687.2008.00717.x CrossRefGoogle Scholar
  12. McMullen, J., Laakkonen, E., Hannula-Sormunen, M. M., & Lehtinen, E. (2014). Modeling the developmental trajectories of rational number concept(s): A latent variable approach. Learning and Instruction. doi: 10.1016/j.learninstruc.2013.12.004 Google Scholar
  13. Meert, G. J., Grégoire, J., & Noël, M.-P. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107, 244–259.CrossRefGoogle Scholar
  14. Moss, J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number system. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: Mathematics in the classroom (pp. 121–162). Washington: National Academic Press.Google Scholar
  15. Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 27–52. doi: 10.1207/s15326985ep4001_3 CrossRefGoogle Scholar
  16. Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72. doi: 10.1016/j.learninstruc.2013.05.003 CrossRefGoogle Scholar
  17. Post, T., Cramer, K., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational numbers: An integration of research (pp. 327–361). Hillsdale: Lawrence Erlbaum.Google Scholar
  18. Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20, 8–27.CrossRefGoogle Scholar
  19. Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23, 691–697. doi: 10.1177/0956797612440101
  20. Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Science, 17, 13–19.CrossRefGoogle Scholar
  21. Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101–140. doi: 10.1016/j.cogpsych.2005.03.001 CrossRefGoogle Scholar
  22. Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and instruction, 14, 503--518. doi: 10.1016/j.learninstruc.2004.06.015
  23. Vamvakoussi, X., Christou, K. P., Mertens, L., & Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students’ understanding of density. Learning and Instruction, 21, 676–685. doi: 10.1016/j.learninstruc.2011.03.005
  24. Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344–355. doi: 10.1016/j.jmathb.2012.02.001
  25. Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14, 453–467. doi: 10.1016/j.learninstruc.2004.06.013 CrossRefGoogle Scholar
  26. Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28, 181–209. doi: 10.1080/07370001003676603 CrossRefGoogle Scholar
  27. Vamvakoussi, X., Vosniadou, S., & Van Dooren, W. (2013). The framework theory approach applied to mathematics learning. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 305–321). New York: Routledge.Google Scholar
  28. Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: Towards a comprehensive test instrument. ZDM Mathematics Education. Advance online publication.Google Scholar
  29. Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15, 154–164. doi: 10.1080/14794802.2013.797747 CrossRefGoogle Scholar
  30. Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2014). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Learning and Instruction. doi: 10.1016/j.learninstruc.2014.03.004 Google Scholar
  31. Vlaams Ministerie van Onderwijs en Vorming. (2011a). Eindtermen wiskunde: secundair onderwijs, eerste graad A-stroom. Retrieved from
  32. Vlaams Ministerie van Onderwijs en Vorming. (2011b). Eindtermen wiskunde: secundair onderwijs, derde graad ASO. Retrieved from
  33. Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45–69. doi: 10.1016/0959-4752(94)90018-3 CrossRefGoogle Scholar
  34. Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). Mahwah: Lawrence Erlbaum.Google Scholar
  35. Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19, 371–384.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jo Van Hoof
    • 1
  • Lieven Verschaffel
    • 1
  • Wim Van Dooren
    • 1
  1. 1.Centre for Instructional Psychology and TechnologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations