Educational Studies in Mathematics

, Volume 89, Issue 1, pp 133–147 | Cite as

Influence of additive and multiplicative structure and direction of comparison on the reversal error

  • José Antonio González-Calero
  • David Arnau
  • Belén Laserna-Belenguer


An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons we used a format that can be translated from Spanish word-for-word as “n times more than” (increasing comparison) and “n times less than” (decreasing comparison) instead of “n times as many”, which is usual in other studies. Data analysis shows a significantly lower incidence of reversal error in the decreasing comparisons compared to the increasing ones. Additionally, no significant differences were found between additive and multiplicative comparisons. These results cannot be explained by the static comparison model.


Problem solving Algebra Reversal error Equation 


  1. Bell, A., & Malone, J. (1992). Students’ manipulation of algebra symbols and their awareness of the corresponding conceptual relationships. In B. Southwell, B. Perry, & K. Owens (Eds.), Space: The first and final frontier (Proceedings of the 15th Annual Conference of the Mathematics Education Research Group of Australasia) (pp. 120–127). Sydney, Australia: MERGA.Google Scholar
  2. Bell, A., Swan, M., & Taylor, G. (1981). Choice of operations in verbal problems with decimal numbers. Educational Studies in Mathematics, 12(4), 399–420. doi: 10.1007/BF00308139 CrossRefGoogle Scholar
  3. Castro, E. (1995). Niveles de comprensión en problemas verbales de comparación multiplicativa [Levels of comprehension in multiplicative comparison word problems]. Granada: Comares.Google Scholar
  4. Christianson, K., Mestre, J. P., & Luke, S. G. (2012). Practice makes (nearly) perfect: Solving “students-and-professors”-type algebra word problems. Applied Cognitive Psychology, 26(5), 810–822.CrossRefGoogle Scholar
  5. Clement, J. J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception. Journal for Research in Mathematics Education, 13(1), 16–30.CrossRefGoogle Scholar
  6. Clement, J., Lochhead, J., & Monk, G. (1981). Translation difficulties in learning mathematics. The American Mathematical Monthly, 88(4), 286–290. doi: 10.1080/17470211003787619 CrossRefGoogle Scholar
  7. Clement, J. J., Lochhead, J., & Soloway, E. (1980). Positive effects of computer programming on students’ understanding of variables and equations. In Proceedings of the ACM 1980 Annual Conference (pp. 467–474). Nashville, TN: ACM.CrossRefGoogle Scholar
  8. Cohen, E., & Kanim, S. E. (2005). Factors influencing the algebra “reversal error”. American Journal of Physics, 73(11), 1072–1078.CrossRefGoogle Scholar
  9. Cooper, M. (1986). The dependence of multiplicative reversal on equation format. Journal of Mathematical Behaviour, 5(2), 115–120.Google Scholar
  10. Fisher, K. M. (1988). The students-and-professors problem revisited. Journal for Research in Mathematics Education, 19(3), 260–262.CrossRefGoogle Scholar
  11. Fisher, K. J., Borchert, K., & Bassok, M. (2011). Following the standard form: Effects of equation format on algebraic modeling. Memory & Cognition, 39(3), 502–515. doi: 10.3758/s13421-010-0031-6 CrossRefGoogle Scholar
  12. Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18–32. doi: 10.1037/0022-0663.87.1.18 CrossRefGoogle Scholar
  13. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  14. Lewis, A. B., & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79(4), 363–371. doi: 10.1037/0022-0663.79.4.363 CrossRefGoogle Scholar
  15. Lopez-Real, F. (1995). How important is the reversal error in algebra? In S. Flavel et al. (Eds.), GALTHA (Proceedings of the 18th Annual Conference of the Mathematics Education Research Group of Australasia) (pp. 390–396). Darwin, Australia: MERGA.Google Scholar
  16. MacGregor, M., & Stacey, K. (1993). Cognitive models underlying students’ formulation of simple linear equations. Journal for Research in Mathematics Education, 24(3), 217–232.CrossRefGoogle Scholar
  17. Mestre, J. P. (1988). The role of language comprehension in mathematics and problem solving. In R. R. Cocking & J. P. Mestre (Eds.), Linguistic and cultural influences on learning mathematics (pp. 201–220). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  18. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.Google Scholar
  19. Nesher, P., Herskovitz, S., & Novotna, J. (2003). Situation model, text base and what else? Factors affecting problem solving. Educational Studies in Mathematics, 52(2), 151–176.CrossRefGoogle Scholar
  20. Nesher, P., & Teubal, E. (1975). Verbal cues as an interfering factor in verbal problem solving. Educational Studies in Mathematics, 6(1), 41–51. doi: 10.1007/BF00590023 CrossRefGoogle Scholar
  21. Paige, J., & Simon, H. (1966). Cognitive processes in solving algebra word problems. In B. Kleinmuntz (Ed.), Problem solving: Research, method, and theory (pp. 51–148). New York: Wiley.Google Scholar
  22. Rosnick, P. (1981). Some misconceptions concerning the concept of variable. Mathematics Teacher, 74(6), 418–420.Google Scholar
  23. Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic.Google Scholar
  24. Verschaffel, L., De Corte, E., & Pauwels, A. (1992). Solving compare problems: An eye-movement test of Lewis and Mayer’s consistency hypothesis. Journal of Educational Psychology, 84(1), 85–94. doi: 10.1037/0022-0663.84.1.85 CrossRefGoogle Scholar
  25. Wollman, W. (1983). Determining the sources of error in a translation from sentence to equation. Journal for Research in Mathematics Education, 14(3), 169–181.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José Antonio González-Calero
    • 1
  • David Arnau
    • 2
  • Belén Laserna-Belenguer
    • 2
  1. 1.Department of MathematicsUniversity of Castilla-La Mancha, School of Education of Albacete (Edificio Simón Abril)AlbaceteSpain
  2. 2.Department of Didactics of MathematicsUniversity of ValenciaValenciaSpain

Personalised recommendations