Educational Studies in Mathematics

, Volume 84, Issue 3, pp 461–485 | Cite as

Synergies between theoretical approaches to mathematics education with technology: A case study through a cross-analysis methodology

  • Mirko Maracci
  • Claire Cazes
  • Fabrice Vandebrouck
  • Maria Alessandra Mariotti


Mathematics education as a research domain is characterized by a plurality of theoretical approaches. Acknowledging the existence of such diversity and the risks of an excessive theoretical fragmentation does not mean to search for a unifying theory but to urge the community to develop strategies for coping with this diversity. This article is meant to show the potential of a “cross-analysis” methodology for establishing connections between different theoretical approaches to mathematics education with technology. Within the frame of the ReMath European Project, two Teaching Experiments were realized, centred on the use of a same ICT tool—Casyopée. Two distinct theoretical approaches shaped both the Teaching Experiments design and their enactments: the Theory of Didactical Situations and the Theory of Semiotic Mediation. The two Teaching Experiments have then been analysed from both theoretical points of view. In this article we will provide some examples drawn from this cross-analysis that show the synergy which can be established between the aforementioned theoretical approaches. Beyond contributing to a deeper understanding of the observed “didactical phenomena”, that synergy allows establishing connections between the two approaches that lead to their reciprocal enrichment.


Mathematics education with technology Synergy between theoretical frameworks Cross-experimentation Cross-analysis Theory of didactical situations Theory of semiotic mediation 



Research funded by the European Community under the VI Framework Programme, IST-4-26751-STP “ReMath: Representing Mathematics with Digital Media”,


  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  2. Artigue, M. (2008). Digital technologies: A window on theoretical issues in mathematics education. European Research in Mathematics Education V. Proceeding of CERME5 (pp. 68–82). Larnaca, Cyprus.Google Scholar
  3. Artigue, M. (Ed.) (2009). Integrated theoretical framework (Version C). Deliverable 18. Retrieved from ReMath Project website,
  4. Artigue, M., Bosch, M., & Gascón, J. (2011). Research praxeologies and networking theories. Proceedings of CERME 7 (pp. 2381–90). Rzeszów, Poland: University of Rzeszów. Google Scholar
  5. Artigue, M., Cerulli, M., Haspekiam, M., & Maracci, M. (2009). Connecting and integrating theoretical frames: The TELMA contribution. International Journal of Computers for Mathematical Learning, 14(3), 217–240.CrossRefGoogle Scholar
  6. Arzarello, F. (2006). Semiosis as a multimodal process. Relime, 9(1), 267–299.Google Scholar
  7. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 750–787). Mahwah: LEA.Google Scholar
  8. Bikner-Ahsbahs, A. (2010). Networking of theories: Why and how? Proceedings of CERME 6 (pp. 6–15). Lyon, France: INRP.Google Scholar
  9. Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, visualization and experimentation. New York: Springer.Google Scholar
  10. Bottino, R. M., Artigue, M., & Noss, R. (2009). Building European collaboration in technology-enhanced learning in mathematics. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, & S. Barnes (Eds.), Technology enhanced learning: Principles and products (pp. 73–87). New York: Springer.Google Scholar
  11. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. Cerulli, M., Pedemonte, B., & Robotti, E. (2006). An integrated perspective to approach technology in mathematics education. European Research in Mathematics Education IV. Proceeding of CERME4 (pp. 1389–1399). Sant Feliu de Guíxols, Spain.Google Scholar
  13. Cerulli, M., Trgalova, J., Maracci, M., Psycharis, G., & Georget, J.-P. (2008). Comparing theoretical frameworks enacted in experimental research: TELMA experience. ZDM, Comparing, combining, coordinating – Networking strategies for connecting theoretical approaches, 40(2), 201–213.Google Scholar
  14. Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissages intellectuels [Semiosis and human thought: semiotic registers and intellectual learning]. Berne: Peter Lang.Google Scholar
  15. Falcade, R. (2006). Théorie des Situations, médiation sémiotique et discussions collective, dans des séquences d'enseignement avec Cabri-Géomètre pour la construction des notions de fonction et graphe de fonction [Theory of Situations, semiotic mediation and collective discussions in teaching sequences with Cabri Geometry for the construction of the notions of function and function graph]. Grenoble: Université J. Fourier, unpublished doctoral dissertation.Google Scholar
  16. Hasan, R. (2002). Semiotic mediation, language and society: Three exotripic theories - Vygotsky, Halliday and Bernstein. In J. Webster (Ed.), Language, society and consciousness: The collected works of Ruqaiya Hasan, vol 1. London: Equinox.Google Scholar
  17. Hersant, M., & Perrin-Glorian, M. J. (2005). Characterization of an ordinary teaching practice with the help of the theory of didactic situations. Educational Studies in Mathematics, 59(1), 113–151.CrossRefGoogle Scholar
  18. Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology-rethinking the terrain: The 17th ICMI study. New York: Springer.Google Scholar
  19. Kidron, I., Bikner-Ahsbahs, A., Monaghan, J., Radford L., & Sensevy, G. (2011). Introduction to the papers of WG 16: Different theoretical perspectives and approaches in research in mathematics education. Proceedings of CERME 7 (pp. 2376–80). Rzeszów, Poland: University of Rzeszów. Google Scholar
  20. Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: The case of social interactions. Zentralblatt für Didaktik der Mathematik - The International Journal on Mathematics Education, 40(2), 247–264.CrossRefGoogle Scholar
  21. Kozulin, A. (2003). Psychological tools and mediated learning. In A. Kozulin, B. Gindis, V. S. Ageyev, & S. M. Miller (Eds.), Vygotsky’s educational theory in cultural context (pp. 15–38). New York: Cambridge University Press.CrossRefGoogle Scholar
  22. Kynigos, C., & Psycharis, G. (2009). Investigating the role of context in experimental research involving the use of digital media for the learning of mathematics: Boundary objects as vehicles for integration. International Journal of Computers for Mathematical Learning, 14(3), 265–298.CrossRefGoogle Scholar
  23. Lagrange, J.-B. (2010). Teaching and learning about functions at upper secondary level: Designing and experimenting the software environment Casyopée. International Journal of Mathematical Education in Science and Technology, 41(2), 243–255.CrossRefGoogle Scholar
  24. Maracci, M., Cazes, C., Vandebrouk, F., & Mariotti, M. A. (2009). Casyopée in the classroom: Two different theory-driven pedagogical approaches. Proceedings of CERME6 (pp. 1399–1408). Lyon, France: INRP.Google Scholar
  25. Margolinas, C. (Ed.). (1995). Les débats de didactique des mathématiques [The debates of the didactique of mathematics]. Grenoble: La Pensée Sauvage Editions.Google Scholar
  26. Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM, Transforming Mathematics Education through the Use of Dynamic Mathematics Technologies, 41(4), 427–440.CrossRefGoogle Scholar
  27. Mariotti, M. A., & Maracci, M. (Eds.) (2008). Design-based research: Process and results. Deliverable 13. Retrieved from ReMath Project website:
  28. Mariotti, M. A., & Maracci, M. (2010). Un artefact comme outil de médiation sémiotique : Une ressource pour le professeur [An artefact as a tool of semiotic mediation: a resource for the teacher]. In G. Gueudet & L. Trouche (Eds.), Ressources vives. Le travail documentaire des professeurs en mathématiques (pp. 91–107). Rennes: Presses Universitaires de Rennes et INRP.Google Scholar
  29. Mason, J. (2010). Discerning in and between theories in mathematics education. Proceedings of CERME 7 (pp. 2483–92). Rzeszów, Poland: University of Rzeszów. Google Scholar
  30. Meira, L. (1995). Mediation by tools in the mathematics classroom. In L. Meira & D. Carraher (Eds.), Proc. of the 19th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol I, pp. 102–111). Recife, Brazil: PME.Google Scholar
  31. Monaghan, J. (2010). Theoretical genesis of an informal meta-theory to develop a way of talking about mathematics and science education and to connect European and North American literature. Proceedings of CERME 7 (pp. 2493–502). Rzeszów, Poland: University of Rzeszów. Google Scholar
  32. Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht: Kluwer Academic Press.CrossRefGoogle Scholar
  33. Perrin-Glorian, M. J., & Hersant, M. (2003). Milieu et contrat didactique, outils pour l’analyse d’une séquence ordinaire [Milieu and didactic contract, tools for the analysis of a regular sequence]. Recherches en Didactiques des Mathématiques, 23(2), 217–276.Google Scholar
  34. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches—First steps towards a conceptual framework. ZDM - The International Journal on Mathematics Education, 40(2), 165–178.CrossRefGoogle Scholar
  35. Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.CrossRefGoogle Scholar
  36. Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM – The International Journal on Mathematics Education, 40(2), 317–327.CrossRefGoogle Scholar
  37. Robert, A. (1998). Outils d’analyse des contenus mathématiques enseignés au lycée et à l’université [Tools for the analysis of the mathematics content taught in high school and university]. Recherches en Didactique des Mathématiques, 18(2), 139–190.Google Scholar
  38. Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Harvard: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mirko Maracci
    • 1
  • Claire Cazes
    • 2
  • Fabrice Vandebrouck
    • 2
  • Maria Alessandra Mariotti
    • 3
  1. 1.Department of MathematicsUniversity of Pavia, ItalyPaviaItaly
  2. 2.Laboratoire de Didactique André RevuzUniversité Paris Diderot, FranceParis Cedex 13France
  3. 3.Department of Information Engineering and MathematicsUniversity of Siena, ItalySienaItaly

Personalised recommendations