Advertisement

Educational Studies in Mathematics

, Volume 84, Issue 2, pp 249–265 | Cite as

The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years

  • Götz Krummheuer
Article

Abstract

This paper deals with one aspect of the endeavor to generate a theory of the development of mathematical thinking of children in the early years ages 3 to 10. By comparing two scenes, one from preschool and one from a first grade mathematics class, the relationship between diagrammatic and narrative argumentations among children and teachers is reconstructed and related to possible developmental trajectories of mathematical thinking. Theoretically, I attempt to implement these developmental paths in a concept of an “Interactional Niche in the Development of Mathematical Thinking.”

Keywords

Interactional Niche in the Development of Mathematical Thinking Socio-constructivism Interaction Diagrammatic argumentation Narrative argumentation 

References

  1. Acar Bayraktar, E., Hümmer, A.-M., Huth, M., Münz, M., & Reiman, M. (2011). Forschungsmethodischer Rahmen der Projekte erStMaL und MaKreKi [The research methods of the projects erStMaL and MaKreKi]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 11–24). New York: Waxmann.Google Scholar
  2. Acar Bayraktar, E., & Krummheuer, G. (2011). Die Thematisierung von Lagebeziehungen und Perspektiven in zwei familialen Spielsituationen. Erste Einsichten in die Struktur „interaktionaler Nischen mathematischer Denkentwicklung“ im familialen Kontext [The thematization of location and perspective in two familial play situations. First insights in the structure of "interactional niches in the development of mathematical thinking" in a familial context]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 135–174). New York: Waxmann.Google Scholar
  3. Anderson, A., Anderson, J., & Thauberg, C. (2008). Mathematics learning and the teaching in the early years. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 95–132). Charlotte, NC: Information Age Publishing.Google Scholar
  4. Bauersfeld, H. (1995). "Language games" in the mathematics classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271–291). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  5. Bauersfeld, H., & Seeger, F. (2003). Semiotische Wende–Ein neuer Blick auf das Sprachspiel von Lehren und Lernen [Semiotic change—a new view on the language game of teaching and learning]. In M. Hoffmann (Ed.), Mathematik verstehen–Semiotische Perspektiven (pp. 20–33). Hildesheim: Franzbecker.Google Scholar
  6. Blumer, H. (1969). Symbolic interactionism. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  7. Brandt, B. (2000a). Interaktionskompetenz im Mathematikunterricht der Grundschule [Interactional competence in the primary mathematics classroom]. In A. Kaiser & C. Röhner (Eds.), Kinder im 21. Jahrhundert. Münster: Lit. Verlag.Google Scholar
  8. Brandt, B. (2000b). Zur Rekonstruktion von Partizipationsformen: Jarek in verschiedenen Lernsituationen [The reconstruction of forms of participation: Jarek in different learning situations]. In O. Jaumann-Graumann & W. Köhnlein (Eds.), Lehrerprofessionalität–Lehrerprofessionalisierung (pp. 166–172). Heilbronn: Klinkhardt.Google Scholar
  9. Brandt, B. (2004). Kinder als Lernende. Partizipationsspielräume und -profile im Klassenzimmer. [Children as learners. Leeways of participation and profiles of participation in the classroom]. Frankfurt a. M: Peter Lang.Google Scholar
  10. Brandt, B. & Krummheuer, G. (1999). Verantwortlichkeit und Originalität in mathematischen Argumentationsprozessen der Grundschule [Responsibility and originality in processes of mathematical argumentation in primary schools]. Mathematica Didactica, 21(1).Google Scholar
  11. Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.Google Scholar
  12. Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.Google Scholar
  13. Carruthers, E., & Worthington, M. (2006). Children's mathematics: Making marks, making meaning. Los Angeles: Sage.Google Scholar
  14. Civil, M. (2006). Working towards equity in mathematics education: A focus on learners, teachers, and parents. 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Vol. 1 (pp. 30–50). Mérida, Mexico: Universidad Pedagógica Nacional.Google Scholar
  15. Clements, D. H., & Sarama, J. (2005). Early childhood mathematics learning. In D. H. Clements & J. Sarama (Eds.), Second handbook of research on mathematics teaching and learning (pp. 461–555). Charlotte, NC: Information Age Publishing.Google Scholar
  16. Conroy, F. (1988). Body and soul. New York: Delta Book.Google Scholar
  17. Dörfler, W. (2006). Diagramme und Mathematikunterricht [Diagrams and the mathematics classroom]. Journal für Mathematikdidaktik, 27(3/4), 200–219.Google Scholar
  18. Ernest, P. (2010). Reflections on theories of learning. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 39–46). Berlin: Springer.CrossRefGoogle Scholar
  19. Fetzer, M. (2007). Interaktion am Werk. Eine Interaktionstheorie fachlichen Lernens, entwickelt am Beispiel von Schreibanlässen im Mathematikunterricht der Grundschule [Interaction at work. An interactional theory of content-based learning, exemplarily developed from opportunities of writing in the primary mathematics classroom]. Bad Heilbrunn: Klinkhardt.Google Scholar
  20. Fetzer, M. (2010). Reassambling the social classroom. Mathematikunterricht in einer Welt der Dinge [The mathematics classroom in a world of things]. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik. Götz Krummheuer zum 60. Geburtstag (pp. 267–290). New York: Waxmann.Google Scholar
  21. Garfinkel, H. (1972). Remarks on ethnomethodology. In J. J. Gumperz & D. Hymes (Eds.), Directions in sociolinguistics: The ethnography of communication. New York: Holt.Google Scholar
  22. Ginsburg, H. P., & Ertle, B. (2008). Knowing the mathematics in early childhood mathematics. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 45–66). Charlotte, NC: Information Age Publishing.Google Scholar
  23. Hynes-Berry, M. (2012). Don't leave the story in the book: Using literature to guide inquiry in early childhood classrooms. New York: Teachers College Press.Google Scholar
  24. Kadunz, G. (2006). Schrift und Diagramm [Inscription and diagram]. Journal für Mathematikdidaktik, 27(3/4), 220–239.Google Scholar
  25. Karmiloff-Smith, A. (1996). Beyond modularity: A developmental perspective on cognitve science. Cambridge, MA: MIT Press.Google Scholar
  26. Klann-Delius, G. (2008). Spracherwerb [Acquisition of language]. Stuttgart: J. B. Metzler.Google Scholar
  27. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  28. Krummheuer, G. (1997). Narrativität und Lernen. Mikrosoziologische Studien zur sozialen Konstitution schulischen Lernens [Narrativity and learning. Micorsociological studies about the social constitution of learning at school]. Weinheim: Deutscher Studien Verlag.Google Scholar
  29. Krummheuer, G. (1999). The narrative character of argumentative mathematics classroom interaction in primary education. Proceedings of the European Society for Research in Mathematics Education I (pp. 339–349). Osnabrück, Germany: Forschungsinstitut für Didaktik der Mathematik.Google Scholar
  30. Krummheuer, G. (2000a). Mathematics learning in narrative classroom cultures: Studies of argumentation in primary mathematics education. For the Learning of Mathematics, 20(1), 22–32.Google Scholar
  31. Krummheuer, G. (2000b). Studies of argumentation in primary mathematics education. Zentralblatt für Didaktik der Mathematik, 32(5), 155–161.CrossRefGoogle Scholar
  32. Krummheuer, G. (2009). Inscription, narration and diagrammatically based argumentation: The narrative accounting practices in the primary school mathematics lesson. In M.-W. Roth (Ed.), Mathematical representation at the interface of the body and culture (pp. 219–243). Charlotte, NC: Information Age Publishing.Google Scholar
  33. Krummheuer, G. (2011a). Die empirisch begründete Herleitung des Begriffs der “Interaktionalen Nische mathematischer Denkentwicklung” (NMD) [The empirically grounded derivation of the concept "Interactional niche in the development of mathematical thinking" (NMT)]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 25–90). New York: Waxmann.Google Scholar
  34. Krummheuer, G. (2011b). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (ZDM), 43(1/2), 81–90.CrossRefGoogle Scholar
  35. Krummheuer, G. (2012a). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “interactional Niche in the development of Mathematical Thinking" (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338.CrossRefGoogle Scholar
  36. Krummheuer, G. (2012b). The relationship between cultural expectation and the local realization of a mathematics learning environment. A mathematics education perspective on early mathematics learning in the strain between the poles of instruction and construction. Frankfurt am Main. Available from http://cermat.org/poem2012/ Accessed 19 January 2013
  37. Latour, B. (2005). Reassembling the social. An introduction to the Actor-Network-Theory. Oxford: Oxford Universtiy Press.Google Scholar
  38. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.Google Scholar
  39. Lave, W., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Lorenz, J. H. (2012). Kinder begreifen Mathematik: Frühe mathematische Bildung und Förderung [Children comprehend mathematics. Early mathematics education and support]. Stuttgart: Kohlhammer.Google Scholar
  41. Morgan, C. (1998). Writing mathematically: The discourse of investigation. London: Falmer Press.Google Scholar
  42. Peirce, C. S. (1978). Collected papers of Charles Sanders Peirce. Cambridge, MA: Harvard University Press.Google Scholar
  43. Roth, W.-M., & Mc Ginn, M. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.CrossRefGoogle Scholar
  44. Schreiber, C. (2010). Semiotische Prozess-Karten. Chatbasierte Inskriptionen in mathematischen Problemlöseprozessen [Semotic process-maps. Inscriptions in processes of mathematical problem solving based on chats]. New York: Waxmann.Google Scholar
  45. Schütz, A., & Luckmann, T. (1979). Strukturen der Lebenswelt [Structures of the everyday world]. Frankfurt a. M: Suhrkamp.Google Scholar
  46. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Siegler, R. S. (2000). The rebirth of children's learning. Child Development, 71(1), 26–35.CrossRefGoogle Scholar
  48. Super, C. M., & Harkness, S. (1986). The developmental niche: A conceputalization at the interface of child and culture. International Journal of Behavioral Development, 9, 545–569.CrossRefGoogle Scholar
  49. Tiedemann, K. (2010). Support in mathematischen Eltern-Kind-Diskursen: funktionale Betrachtung einer Interaktionsroutine [Support in mathematical discourses between parents and child: functional consideration of an interactional routine]. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik (pp. 149–175). New York: Waxmann.Google Scholar
  50. Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.Google Scholar
  51. van Oers, B. (1997). On the narrative nature of young children's iconic representations: Some evidence and implications. International Journal of Early Years Education, 5(3), 237–245.CrossRefGoogle Scholar
  52. Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. In P. Cobb, & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 163–201).Google Scholar
  53. Wagner-Willi, M., et al. (2007). Rituelle Interaktionsmuster und Prozesse des Erfahrungslernens im Mathematikunterricht [Ritual patterns of interaction and learning mathematics by experience]. In C. Wulf, B. Althans, M. Blaschke, N. Ferrin, & M. Göhlich (Eds.), Lernkulturen im Umbruch. Rituelle Praktiken in der Schule, Medien, Familie und Jungend. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  54. Webster, N. (1983). In J. L. McKechnie (Ed.), Webster's new twentieth century dictionary. Unabridged (2nd ed.). New York: Simon and Shuster.Google Scholar
  55. Wertsch, J. V., & Tulviste, P. (1992). L. S. Vygotsky and contemporary developmental psychologiy. Journal of Developmental Psychology, 28(4), 548–557.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Goethe UniversityFrankfurt am MainGermany

Personalised recommendations