Advertisement

Educational Studies in Mathematics

, Volume 61, Issue 1–2, pp 133–162 | Cite as

What Makes a Sign a Mathematical Sign? – An Epistemological Perspective on Mathematical Interaction

  • Heinz Steinbring
Article

Abstract

Mathematical signs and symbols have a decisive role for coding, constructing and communicating mathematical knowledge. Nevertheless these mathematical signs do not already contain mathematical meaning and conceptual ideas themselves. The contribution will present basic elements of an epistemology of mathematical knowledge and then apply these theoretical ideas for analyzing case studies of two teaching episodes from elementary mathematics teaching. In this way different roles of mathematical signs as means of communication (oral function), of indicating (deictic function) and of writing (symbolic function) will be elaborated.

Key Words

epistemology construction of mathematical knowledge analysis of mathematical classroom interaction mathematical signs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borel, E.: 1965, Elements of the Theory of Probability, Englewood Cliffs, New Jersey, Prentice-Hall.Google Scholar
  2. Davis, P. J. and Hersh, R.: 1981, The Mathematical Experience, Birkhäuser, Boston.Google Scholar
  3. Duval, R.: 2000, ‘Basic issues for research in mathematics education’, in T. Nakahara and M. Koyama (eds.), Proceedings of the 24th International Conference for the Psychology of Mathematics Education, Japan, Nishiki Print Co., Ltd. I, pp. 55–69.Google Scholar
  4. Hacking, I.: 1975, The Emergence of Probability, Cambridge University Press, Cambridge.Google Scholar
  5. Loève, M.: 1978, ‘Calcul des probabilités′, in J. Dieudonné (ed.), Abgrégé d'histoire des mathématiques 1700–1900, vol. II, Hermann, Paris, pp. 277–313.Google Scholar
  6. Maistrov, L. E.: 1974, Probability Theory: A Historical Sketch, New York, Academic Press.Google Scholar
  7. Menninger, K.: 1979, Zahlwort und Ziffer. Eine Kulturgeschichte der Zahl, (3. edition), Vandenhoek & Ruprecht, Göttingen.Google Scholar
  8. Nöth, W.: 2000, Handbuch der Semiotik, Verlag J.B. Metzler, Stuttgart & Weimar.Google Scholar
  9. Otte, M.: 1984, Was ist Mathematik?, Occasional Paper Nr. 43 des IDM Bielefeld, Universität Bielefeld, Bielefeld.Google Scholar
  10. Otte, M.: 2001, ‘Mathematical epistemology from a semiotic point of view’, Paper presented to the Discussion Group on Semiotics in Mathematics Education at the 25th PME International Conference, July 12–17 2001, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  11. Peirce, C. S.: 1991, Schriften zum Pragmatismus und Pragmatizismus, Suhrkamp, Frankfurt am Main.Google Scholar
  12. Pimm, D.: 1992, ‘Metaphor and metonymy in the mathematics classroom’, Paper presented to the WG7 Language and Communication in the Classroom ICME-7, Québec, Univerity of Quebec, Quebec.Google Scholar
  13. Radford, L.: 1998, ‘On signs and representation’, Scientia Paedagogica Experimentalis XXXV(1), 277–302.Google Scholar
  14. Radford, L.: 2000, ‘Signs and meanings in the students' emergent algebraic thinking: A semiotic analysis',educational Studies in Mathematics 42(3), 237–268.CrossRefGoogle Scholar
  15. Radford, L.: 2001, ‘On the relevance of semiotics in mathematics education’, Paper Presented to the Discussion Group on Semiotics in Mathematics Education at the 25th PME International Conference, July 12–17 2001, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  16. Radford, L.: 2003a, ‘On culture and mind' A post-Vygotskian semiotic perspective, with an example from greek mathematical thought’, in M. Anderson, A. Sáenz–Ludlow, S. Zellweger and V. Cifarelli (eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing, Legas Publishing, Ottawa, pp. 49–79.Google Scholar
  17. Radford, L.: 2003b, ‘Gestures, speech and the sprouting of signs: A semiotic-cultural approach to students' types of generalization’, Mathematical Thinking and Learning 5(1), 37–70.CrossRefGoogle Scholar
  18. Resnik, M. D.: 2000, ‘Some remarks on mathematical progress from a structural perspective’, in E. Grossholz and H. Berger (eds.), The Growth of Mathematical Knowledge, Kluwer Academic Publishers, Dordrecht, pp. 353–362.Google Scholar
  19. Rotman, B.: 1987, Signifying Nothing-The Semiotics of Zero, Stanford University Press, Stanford, California.Google Scholar
  20. Sáenz–Ludlow, A.: 2001, ‘Classroom mathematics discourse as an interpreting game’, Paper Presented to the Discussion Group on Semiotics in Mathematics Education at the 25th PME International Conference, July 12–17 2001, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  21. Steinbring, H.: 1980, Zur Entwicklung des Wahrscheinlichkeitsbegriffs-Das Anwendungsproblem der Wahrscheinlichkeitstheorie aus didaktischer Sicht, Materialien und Studien Bd. 18 des IDM Bielefeld, Universität Bielefeld, Bielefeld.Google Scholar
  22. Steinbring, H.: 1988, The Theoretical Nature of Probability and How to Cope with it in the Classroom, Occasional Paper Nr. 99 des IDM Bielefeld, Universität Bielefeld, Bielefeld.Google Scholar
  23. Steinbring, H.: 1989, ‘Routine and meaning in the mathematics classroom’, For the Learning of Mathematics 9(1), 24–33.Google Scholar
  24. Steinbring, H.: 1991, ‘The concept of chance in everyday teaching: Aspects of a social epistemology of mathematical knowledge’, Educational Studies in Mathematics 22, 503–522.CrossRefGoogle Scholar
  25. Steinbring, H.: 1997, ‘Epistemological investigation of classroom interaction in elementary mathematics teaching’, Educational Studies in Mathematics 32(1), 49–92.CrossRefGoogle Scholar
  26. Steinbring, H.: 1998, ‘Elements of epistemological knowledge for mathematics teachers’, Journal of Mathematics Teacher Education 1(2), 157–189.CrossRefGoogle Scholar
  27. Vygotsky, L. S.: 1987, ‘Thinking and speech’, in R. W. Riebe and A. S. Carton (eds.), The Collected Works of L.S. Vygotsky. vol. 1. Problems of General Psychology, Plenum Press, New York, pp. 37–285.Google Scholar
  28. Wagner, R.: 1981, The Invention of Culture, University of Chicago Press, Chicago.Google Scholar
  29. Wagner, R.: 1986, Symbols that Stand for Themselves, University of Chicago Press, Chicago.Google Scholar
  30. Winter, H.: 1982, ‘Das Gleichheitszeichen im Mathematikunterricht der Primarstufe’, Mathematica Didactica 5, 185–211.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Didaktik der MathematikUniversität DortmundDortmundGermany

Personalised recommendations