Advertisement

Educational Studies in Mathematics

, Volume 59, Issue 1–3, pp 313–324 | Cite as

Analyzing Mathematical Teaching-Learning Situations — the Interplay of Communicational and Epistemological Constraints

  • Heinz Steinbring
Article

Abstract

This is a commentary paper in the volume on “Teachings situations as object of research: empirical studies within theoretical perspectives”. An essential object of mathematics education research is the analysis of interactive teaching and learning processes in which mathematical knowledge is mediated and communicated. Such a research perspective on processes of mathematical interaction has to take care of the difficult relationship between mathematics education theory and everyday mathematics teaching practice. In this regard, the paper tries to relate the development in mathematics education research within the theory of didactical situations to developments in interaction theory and in the epistemological analysis of mathematical communication.

Key Words

communication epistemology relationship between mental and social constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraldi, C., Corsi, G. and Esposito, E.: 1997, GLU. Glossar zu Niklas Luhmanns Theorie sozialer Systeme. Frankfurt am Main: Suhrkamp.Google Scholar
  2. Bauersfeld, H.: 1978, ‘Kommunikationsmuster im Mathematikunterricht – Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung’, in H. Bauersfeld (ed.), Fallstudien und Analysen zum Mathematikunterricht, Schroedel, Hannover, pp. 158–170.Google Scholar
  3. Bauersfeld, H.: 1988, ‘Interaction, Construction and Knowledge: Alternative Perspectives for Mathematics Education’, in D.A. Grouws, T.J. Cooney and D. Jones (eds.), Effective Mathematics Teaching, NCTM and Lawrence Erlbaum, Reston, Virginia, pp. 27–46.Google Scholar
  4. Bazzini, L. (Ed.): 1994, Theory and Practice in Mathematics Education, Proceedings of the Fifth International Conference on Systematic Cooperation Between Theory and Practice in Mathematics Education, Grado, Italy, Padua, ISDAF.Google Scholar
  5. Cobb, P. and Bauersfeld, H. (Eds.): 1995, The Emergence of Mathematical Meaning – Interaction in Classroom Cultures, Vol. 2, Lawrence Erlbaum Hillsdale, New Jersey.Google Scholar
  6. Even, R. and Loewenberg Ball, D. (Eds.): 2003, ‘Connecting research, practise and theory in the development and study of mathematics education’, Educational Studies in Mathematics, Special Issue, 54, 2–3.Google Scholar
  7. Foerster, H. von: 1993, Wissen und Gewissen: Versuch einer Brücke, Frankfurt am Main: Suhrkamp.Google Scholar
  8. Glasersfeld, E. von (Ed.): 1991, Radical Constructivism in Mathematics Education, Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  9. Krummheuer, G.: 1984, ‘Zur unterrichtsmethodischen Diskussion von Rahmungsprozessen’, Journal für Mathematik Didaktik 5(4), 285–306.Google Scholar
  10. Krummheuer, G.: 1998, ‘Formats of Argumentation in the Mathematics Classroom’, in H. Steinbring, M. G. B. Bussi and A. Sierpinska (eds.), Language and Communication in the Mathematics Classroom, National Council of Teachers of Mathematics, Reston, Virginia, pp. 223–234.Google Scholar
  11. Luhmann, N.: 1996, ‘Takt und Zensur im Erziehungssystem’, in N. Luhmann and K.-E. Schorr (eds.), Zwischen System und Umwelt. Fragen an die Pädagogik, Suhrkamp, Frankfurt am Main, pp. 279–294.Google Scholar
  12. Luhmann, N.: 1997, Die Gesellschaft der Gesellschaft, Suhrkamp, Frankfurt am Main.Google Scholar
  13. Luhmann, N.: 2002, Einführung in die Systemtheorie, Carl-Auer-Systeme Verlag, Heidelberg.Google Scholar
  14. Maier, H. and Voigt, J. (Eds.): 1991, Interpretative Unterrichtsforschung, Aulis, Köln.Google Scholar
  15. Maturana, H.R. and Varela, F.J.: 1987, The Tree of Knowledge: The Biological Roots of Human Understanding, New Science Library, Boston, London.Google Scholar
  16. Seeger, F. and Steinbring, H. (Eds.): 1992, ‘The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor’, Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel. (IDM Materialien und Studien 38). Bielefeld: IDM Universität Bielefeld.Google Scholar
  17. Steinbring, H.: 1994, ‘Dialogue between theory and practice in mathematics education’, in R. Biehler, R.W. Scholz, R. Sträß er and B. Winkelmann (eds.), Didactics of Mathematics as a Scientific Discipline, Kluwer Academic Publishers, Dordrecht, pp. 89–102.Google Scholar
  18. Steinbring, H.: 1998, ‘From ‘Stoffdidaktik’ to Social Interactionism: An evolution of approaches to the study of language and communication in German mathematics education research’, in H. Steinbring, M.G.B. Bussi and A. Sierpinska (eds.), Language and Communication in the Mathematics Classroom, National Council of Teachers of Mathematics, Reston, Virginia, pp. 102–119.Google Scholar
  19. Steinbring, H.: 2000a, ‘Interaction analysis of mathematical communication in primary teaching: The epistemological perspective’, Zentralblatt für Didaktik der Mathematik 5, 138–148.Google Scholar
  20. Steinbring, H.: 2000b, Epistemologische und sozial-interaktive Bedingungen der Konstruktion mathematischer Wissensstrukturen (im Unterricht der Grundschule). (Abschlussbericht zu einem DFG–Projekt), Dortmund: Universität, Dortmund.Google Scholar
  21. Steinbring, H.: 2005, The Construction of New Mathematical Knowledge in Classroom Interaction – An Epistemological Perspective. Mathematics Education Library (MELI) Vol. 38, Springer, New York, Heidelberg.Google Scholar
  22. Verstappen, P.F.L. (Ed.): 1988, Report of the Second Conference on Systematic Cooperation Between Theory and Practice in Mathematics Education, Enschede, S.L.O., Lochem/Netherlands.Google Scholar
  23. Voigt, J.: 1994, ‘Negotiation of mathematical meaning and learning mathematics’, Educational Studies in Mathematics 26, 275–298.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Heinz Steinbring
    • 1
  1. 1.Fachbereich 6, MathematikUniversität Duisburg EssenCampus Essen

Personalised recommendations