Copper-induced sublethal effects in Bufo gargarizans tadpoles: growth, intestinal histology and microbial alternations

Abstract

Copper (Cu) is one of the environmental contaminations which can pose significant risks for organisms. The current study explores the effects of Cu exposure on the growth, intestinal histology and microbial ecology in Bufo gargarizans. The results revealed that 0.5–1 μM Cu exposure induced growth retardation (including reduction of total body length and wet weight) and intestinal histological injury (including disordered enterocyte, changes in the villi and vacuoles) of tadpoles. Also, high-throughput sequencing analysis showed that Cu exposure caused changes in richness, diversity and structure of intestinal microbiota. Moreover, the composition of intestinal microbiota was altered in tadpoles exposed to different concentrations of Cu. At the phylum level, we observed the abundance of proteobacteria was increased, while the abundance of fusobacteria was decreased in the intestinal microbiota of tadpoles exposed to 1 μM Cu. At the genus level, a reduced abundance of kluyvera and aeromonas was observed in the intestinal microbiota of tadpoles under the exposure of 0–0.5 μM Cu. Finally, functional predictions revealed that tadpoles exposed to copper may be at a higher risk of developing metabolic disorders or diseases. Above all, our results will develop a comprehensive view of the Cu exposure in amphibians and will yield a new consideration for sublethal effects of Cu on aquatic organisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Aiman U, Mahmood A, Waheed S, Malik RN (2016) Enrichment, geoaccumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site Lahore city, Pakistan. Chemosphere 144:2229–2237

    CAS  Article  Google Scholar 

  2. Andreu V, Gimeno-García E (1999) Evolution of heavy metals in marsh areas under rice farming. Environ Pollut 104:271–282

    CAS  Article  Google Scholar 

  3. Barry MJ (2011) Effects of copper, zinc and dragonfly kairomone on growth rate and induced morphology of Bufo arabicus tadpoles. Ecotoxicol Environ Saf 74(4):918–923

    CAS  Article  Google Scholar 

  4. Berer K, Gerdes LA, Cekanaviciute E et al. (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 114(40):10719–10724

    CAS  Article  Google Scholar 

  5. Bi Y, Qin N, Yang R (2015) Human microbiota: a neglected “organ’ in precision medicine. Infect Dis Transl Med 1:63–72

    Google Scholar 

  6. Birge WJ, Westerman AG, Spromberg JA (2000) Comparative toxicology and risk assessment of amphibians. In: Sparling DW, Linder G, Bishop CA eds Ecotoxicology of Amphibians and Reptiles. SETAC Press, Pensacola, FL, USA, p 727–791

    Google Scholar 

  7. Bletz MC, Goedbloed DJ, Sanchez E et al. (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun 7:13699

    CAS  Article  Google Scholar 

  8. Bo X, Mu D, Wu M, Xiao H, Wang H (2018) The morphological changes and molecular biomarker responses in the liver of fluoride-exposed Bufo gargarizans larvae. Ecotoxicol Environ Saf 151:199–205

    CAS  Article  Google Scholar 

  9. Brown EM, Sadarangani M, Finlay BB (2013) The role of the immune system in governing host-microbe interactions in the intestine. Nat Immuno 14(7):205–205

    Article  CAS  Google Scholar 

  10. Burraco P, Valdés AE, Orizaola G (2020) Metabolic costs of altered growth trajectories across life transitions in amphibians. J Anim Ecol 89(3):855–866

    Article  Google Scholar 

  11. Caporaso JG, Lauber CL, Walters WA et al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    CAS  Article  Google Scholar 

  12. Chai L, Dong Z, Chen A, Wang H (2018) Changes in intestinal microbiota of Bufo gargarizans and its association with body weight during metamorphosis. Arch Microbiol 200(7):1087–1099

    CAS  Article  Google Scholar 

  13. Chen L, Hu C, Lok-Shun Lai N et al. (2018b) Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environ Pollut 240:17–26

    CAS  Article  Google Scholar 

  14. Chen QL, Gong Y, Luo Z, Zheng JL, Zhu QL (2013) Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Aquat. Toxicol. 142:380–386

    Article  CAS  Google Scholar 

  15. Cheng S, Mao H, Ruan Y et al. (2020) Copper changes intestinal microbiota of the cecum and rectum in female mice by 16S rRNA gene sequencing. Biol Trace Elem Res 193(2):445–455

    CAS  Article  Google Scholar 

  16. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    CAS  Article  Google Scholar 

  17. Cooper S, Fortin C (2010) Metal and metallothionein content in bullfrogs: study of a whole watershed impacted by agricultural activities. Ecotoxicol Environ Saf 73(3):391–399

    CAS  Article  Google Scholar 

  18. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–1262

    CAS  Article  Google Scholar 

  19. Davis LR, Bigler L, Woodhams DC (2017) Developmental trajectories of amphibian microbiota: response to bacterial therapy depends on initial community structure. Environ Microbiol 19(4):1502–1517

    Article  Google Scholar 

  20. Ding J, An XL, Lassen SB, Wang HT, Zhu D, Ke X (2019) Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Sci Total Environ 683:210–215

    CAS  Article  Google Scholar 

  21. Elliott AC, Hynan LS (2011) A SAS (®) macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput Methods Programs Biomed 102(1):75–80

    Article  Google Scholar 

  22. Evariste L, Barret M, Mottier A, Mouchet F, Gauthier L, Pinelli E (2019) Gut microbiota of aquatic organisms: a key endpoint for ecotoxicological studies. Environ Pollut 248:989–999

    CAS  Article  Google Scholar 

  23. Fadrosh DW, Ma B, Gajer P et al. (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2(1):6

    Article  Google Scholar 

  24. Fedorenkova A, Vonk JA, Lenders HJR, Creemers RCM, Breure AM, Hendriks AJ (2012) Ranking ecological risks of multiple chemical stressors on amphibians. Environ Toxicol Chem 31:1416–1421

    CAS  Article  Google Scholar 

  25. Flynn RW, Scott DE, Kuhne W, Soteropoulos D, Lance SL (2015) Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, Gastrophryne carolinensis. Environ Toxicol Chem 34(3):575–582

    CAS  Article  Google Scholar 

  26. Fouts DE, Szpakowski S, Purushe J et al. (2012) Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 7(11):e48289

    CAS  Article  Google Scholar 

  27. GB 7473-87: Water quality-determination of copper-2,9-Dimethy-1.10-phenanthrollne spectrophotometric method, PRC National Standard, 1987.

  28. Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB (2019) The genus Aeromonas: a general approach. Microb Pathog 130(May):81–94. 2019

    Article  CAS  Google Scholar 

  29. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  30. Handy RD, Eddy FB, Baines H (2002) Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochim Biophys Acta 1566(1-2):104–115

    CAS  Article  Google Scholar 

  31. Haywood LK, Alexander GJ, Byrne MJ, Cukrowska E (2004) Xenopus laevis embryos and tadpoles as models for testing for pollution by zinc, copper, lead, and cadmium. Afr Zool 39:163–174

    Article  Google Scholar 

  32. Hem JD. (1989). Study and interpretation of the chemical characteristics of natural water, 3rd ed. U.S. Geological Survey Water-supply Paper 2253. Government Printing Office

  33. Hopkins MJ, Sharp R, Macfarlane GT (2011) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48(2):198–205

    Article  Google Scholar 

  34. Jiang XT, Peng X, Deng GH et al. (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 66(1):96–104

    Article  Google Scholar 

  35. Jin Y, Wu S, Zeng Z, Fu Z (2017) Effects of environmental pollutants on gut microbiota. Environ Pollut 222:1–9

    CAS  Article  Google Scholar 

  36. Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H (2020) How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: new ways to study an ancient bag of tricks. Int J Med Microbiol 310(2):151392

    CAS  Article  Google Scholar 

  37. Kolenbrander PE, Andersen RN, Kazmerzak KM, Palmer RJ Jr (2000). Community structure and co-operation in biofilms: coaggregation and coadhesion in oral biofilms. Symposia—Society for General Microbiology

  38. Krieg NR, Staley JT, Ludwig W, Whitman W, Hedlund B, Paster B, Ward N, Brown D, Parte A (2010) Bergey’s manual of systematic bacteriology, Vol 4. Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer Science & Business Media, Berlin, Germany

    Google Scholar 

  39. Lance SL, Flynn RW, Erickson MR, Scott DE (2013) Within- and among-population level differences in response to chronic copper exposure in southern toads, Anaxyrus terrestris. Environ Pollut 177:135–142

    CAS  Article  Google Scholar 

  40. Li Y, Zhao Y, Deng H, Chen A, Chai L (2018) Endocrine disruption, oxidative stress and lipometabolic disturbance of Bufo gargarizans embryos exposed to hexavalent chromium. Ecotoxicol Environ Saf 166:242–250

    CAS  Article  Google Scholar 

  41. Lopez JM, Lee GF (1977) Environmental chemistry of copper in torch lake, Michigan. Water Air Soils Pollut 8:373.

  42. Lupien-Meilleur J, Andrich DE, Quinn S et al. (2020) Interplay between gut microbiota and gastrointestinal peptides: potential outcomes on the regulation of glucose control. Can J Diabetes 44(4):359–367

    Article  Google Scholar 

  43. Marchesi JR, Adams DH, Fava F et al. (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339

    Article  Google Scholar 

  44. Mu D, Meng J, Bo X, Wu M, Xiao H, Wang H (2018) The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles. Ecotoxicol Environ Saf 154:6–12

    CAS  Article  Google Scholar 

  45. Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31(Suppl 1):S29–S34

    Article  Google Scholar 

  46. Ninkov M, Popov Aleksandrov A, Demenesku J et al. (2015) Toxicity of oral cadmium intake: Impact on gut immunity. Toxicol Lett 237(2):89–99

    CAS  Article  Google Scholar 

  47. Nriagu JO (Ed.) (1979) Copper in the environment. Part I: ecological cycling; Part II: health effects. Wiley and Sons, Inc, New York, NY

    Google Scholar 

  48. Obed H-G, Wuerthner V, Hua J (2020) Amphibian host and skin microbiota response to a common agricultural antimicrobial and internal parasite. Microb Ecol. 79(1):175–191

    Article  Google Scholar 

  49. Oberauner L, Zachow C, Lackner S, Högenauer C, Smolle KH, Berg G (2013) The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci Rep 3:1413

    Article  CAS  Google Scholar 

  50. Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14(1):9–21

    CAS  Article  Google Scholar 

  51. Papa S, Bartoli G, Pellegrino A, Fioretto A (2010) Microbial activities and trace element contents in an urban soil. Environ Monit Assess 165:193–203

    CAS  Article  Google Scholar 

  52. Probert HM, Gibson GR (2002) Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 3(2):23–27

    CAS  Google Scholar 

  53. Prokić MD, Gavrić JP, Petrović TG et al. (2019) Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comp Biochem Physiol A Mol Integr Physiol 234:98–105

    Article  CAS  Google Scholar 

  54. Prokić MD, Petrović TG, Gavrić JP et al. (2018) Comparative assessment of the antioxidative defense system in subadult and adult anurans: a lesson from the Bufotes viridis toad. Zoology (Jena) 130:30–37

    Article  Google Scholar 

  55. Qi Z, Zhang Q, Wang Z et al. (2016) Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): immune modulation in response to Aeromonas hydrophila infection. Vet Immunol Immunopathol 169:85–95

    CAS  Article  Google Scholar 

  56. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A (2017) Proteobacteria: a common factor in human diseases. Biomed Res Int 2017:9351507

    CAS  Article  Google Scholar 

  57. Robert J, McGuire CC, Kim F et al. (2018) Water contaminants associated with unconventional oil and gas extraction cause immunotoxicity to amphibian tadpoles. Toxicol Sci 166(1):39–50

    CAS  Article  Google Scholar 

  58. Ruan Y, Wu C, Guo X et al. (2019) High doses of copper and mercury changed cecal microbiota in female mice. Biol Trace Elem Res 189(1):134–144

    CAS  Article  Google Scholar 

  59. Salim SY, Kaplan GG, Madsen KL (2014) Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes 5(2):215–219

    Article  Google Scholar 

  60. Scott DE, Casey ED, Donovan MF, Lynch TK (2007) Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia 153(3):521–532

    Article  Google Scholar 

  61. Serra D, Almeida LM, Dinis TCP (2018) Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci Technol 78:224–233

    CAS  Article  Google Scholar 

  62. Shi N, Li N, Duan X, Niu H (2017) Interaction between the gut microbiome and mucosal immune system. Mil Med Res 4:14

    Google Scholar 

  63. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503

    CAS  Article  Google Scholar 

  64. Sossai P (2012) Butyric acid: what is the future for this old substance? Swiss Med Weekly 142(142):1–6

    Google Scholar 

  65. Sugita H, Tanaka K, Yoshinami M, Deguchi Y (1995) Distribution of Aeromonas species in the intestinal tracts of river fish. Appl Environ Microbiol 61(11):4128–4130

    CAS  Article  Google Scholar 

  66. Székely D, Cogălniceanu D, Székely P, Armijos-Ojeda D, Espinosa-Mogrovejo V, Denoël M (2020) How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol 20(1):24

    Article  Google Scholar 

  67. Takiishi T, Fenero CIM, Câmara NOS (2017) Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5(4):e1373208

    Article  CAS  Google Scholar 

  68. Thele R, Gumpert H, Christensen LB et al. (2017) Draft genome sequence of a Kluyvera intermedia isolate from a patient with a pancreatic abscess. J Glob Antimicrob Resist 10:1–2

    Article  Google Scholar 

  69. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  Google Scholar 

  70. Van Praagh JB, de Goffau MC, Bakker IS et al. (2019) Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage. Ann Surg 269(5):911–916

    Article  Google Scholar 

  71. Wan F, Zhong G, Ning Z et al. (2020) Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. Ecotoxicol Environ Saf 190:110158

    CAS  Article  Google Scholar 

  72. Wang C, Liang G, Chai L, Wang H (2016) Effects of copper on growth, metamorphosis and endocrine disruption of Bufo gargarizans larvae. Aquat Toxicol 170:24–30

    CAS  Article  Google Scholar 

  73. Wang X, Bo X, Yao Q, Wu M, Wang H (2019) The effect of fluorine exposure on morphological indicators and intestinal microbial community in Bufo gargarizans tadpoles. Ecol indic 98:763–771

    CAS  Article  Google Scholar 

  74. Weng FC, Yang YJ, Wang D (2016) Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics 17(Suppl 13):1024

    Article  CAS  Google Scholar 

  75. Yang Y, Song X, Chen A, Wang H, Chai L (2020) Exposure to copper altered the intestinal microbiota in Chinese brown frog (Rana chensinensis). Environ Sci Pollut Res Int. Apr 27(12):13855–13865

    CAS  Article  Google Scholar 

  76. Yao Q, Yang H, Wang X, Wang H (2019) Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere 216:313–323

    CAS  Article  Google Scholar 

  77. Ye J, Joseph SD, Ji M et al. (2017) Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME J 11(5):1087–1101

    CAS  Article  Google Scholar 

  78. Zhao H, Wang Y, Fei D et al. (2019) Destruction of redox and mitochondrial dynamics co-contributes to programmed cell death in chicken kidney under arsenite or/and copper (II) exposure. Ecotoxicol Environ Saf 179:167–174

    CAS  Article  Google Scholar 

  79. Zheng R, Chen X, Ren C et al. (2020) Comparison of the characteristics of intestinal microbiota response in Bufo gargarizans tadpoles: Exposure to the different environmental chemicals (Cu, Cr, Cd and NO3-N). Chemosphere 247:125925

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Angela Dong from University of Western Ontario (Canada) for critical reading, revisions and suggestions that improved the manuscript.

Funding

This research was financially supported by the National Natural Science Foundation of China (No. 42077370) and Natural Science Foundation of Shaanxi Province, China (No. 2020JM232).

Author contributions

RZ: roles/writing (original draft) and data curation. MW, HW: data curation and validation. LC, JP: conceptualization, visualization, supervision, project administration and funding acquisition.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jufang Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Animals used in this study were treated and maintained in accordance with the Animal Care Guidelines of Shaanxi Normal University and China Wildlife Conservation Association.

Consent to participate

This research did not involve human subjects, so clinical trial registration is not applicable.

Consent for publication

The authors certify that this manuscript is original unpublished work, has not been published elsewhere and is not under consideration by another journal. All authors have confirmed the manuscript and agree with its submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Wu, M., Wang, H. et al. Copper-induced sublethal effects in Bufo gargarizans tadpoles: growth, intestinal histology and microbial alternations. Ecotoxicology (2021). https://doi.org/10.1007/s10646-021-02356-y

Download citation

Keywords

  • Cu exposure
  • Bufo gargarizans tadpoles
  • Intestinal microbiota
  • High-throughput sequencing