Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha

Abstract

The increased use of pyrethroid insecticides raises concern for exposure to non-target aquatic species, such as Chinook salmon (Oncorhynchus tshawytscha). Cypermethrin, a type II pyrethroid, is frequently detected in surface waters and sediments at concentrations that exceed levels that induce toxicity to several invertebrate and salmonid species. To better understand the effects of cypermethrin to salmonids following dietary exposure, juvenile Chinook salmon were dietarily exposed to a 0, 200, or 2000 ng/g cypermethrin diet for a duration of 7, 14, or 21 days and assessed for body burden residues, swimming performance, lipid content, and lipid homeostatic gene expression. The average cypermethrin concentrations in fish dietarily exposed to cypermethrin for 21 days were 155.4 and 952.1 ng cypermethrin/g lipid for the 200 and 2000 ng/g pellet treatments, respectively. Increased trends of fatty acid synthase (fasn, r2 = 0.10, p < 0.05) and ATP citrate lyase (acly, r2 = 0.21, p < 0.001) mRNA expression were found in the fish livers relative to increasing cypermethrin body burden residues, though no significant changes in the mRNA expression of farnesoid X receptor or liver X receptor were observed. Furthermore, Chinook salmon dietarily exposed to cypermethrin did not have a significantly altered burst swimming performance (Umax). These results support studies that have suggested Umax may not be a sensitive endpoint when assessing the effects of certain pesticide classes, such as pyrethroids, but that dysregulation of fasn and acly expression may alter lipid homeostasis and energy metabolism in the liver of fish dietarily exposed to cypermethrin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data will be available on request.

References

  1. Beggel S, Connon R, Werner I, Geist J (2011) Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol 105(1–2):180–188. https://doi.org/10.1016/j.aquatox.2011.06.004

    CAS  Article  Google Scholar 

  2. Bonansea RI, Wunderlin DA, Amé MV (2016) Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol Environ Saf 129:311–319. https://doi.org/10.1016/j.ecoenv.2016.03.043

    CAS  Article  Google Scholar 

  3. Bonansea RI, Marino DJ, Bertrand L, Wunderlin DA, Amé MV (2017) Tissue‐specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environ Toxicol Chem 36(7):1764–1774. https://doi.org/10.1002/etc.3613

    CAS  Article  Google Scholar 

  4. Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. In: Ware GW (ed.) Reviews of environmental contamination and toxicology. Springer, New York, NY, p 133–177. https://doi.org/10.1007/978-1-4613-8850-0_4

  5. Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Canada 21:1183–1226. https://doi.org/10.1139/f64-103

    Article  Google Scholar 

  6. Budd R, Bondarenk S, Haver D, Kabashima J, Gan J (2007) Occurrence and bioavailability of pyrethroids in a mixed land use watershed. J Environ Qual 36:1006–1012. https://doi.org/10.2134/jeq2006.0249

    CAS  Article  Google Scholar 

  7. Burridge L, Weis JS, Cabell F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23. https://doi.org/10.1016/j.aquaculture.2010.05.020

    CAS  Article  Google Scholar 

  8. Chypre M, Zaidi N, Smans K (2012) ATP-citrate lyase: a mini-review. Biochem Biophys Re Commun 422:1–4. https://doi.org/10.1016/j.bbrc.2012.04.144

    CAS  Article  Google Scholar 

  9. Cleveland BM, Manor ML (2015) Effects of phytoestrogens on growth-related and lipogenic genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 170:28–37. https://doi.org/10.1016/j.cbpc.2015.02.001

    CAS  Article  Google Scholar 

  10. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679. https://doi.org/10.1002/etc.5620080805

    CAS  Article  Google Scholar 

  11. Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116. https://doi.org/10.1016/j.envint.2014.11.007

    CAS  Article  Google Scholar 

  12. Cripe GM, Goodman LR, Hansen DJ (1984) Effect of chronic exposure to EPN and to guthion on the critical swimming speed and brain acetylcholinesterase activity of Cyprinodon variegatus. Aquat Toxicol 5:255–266. https://doi.org/10.1016/0166-445X(84)90024-9

    CAS  Article  Google Scholar 

  13. Engelking S (2018) Viability, growth, development, and performance of juvenile sockeye salmon (Oncorhynchus nerka) exposed to neonicotinoid pesticides. Dissertation, Simon Fraser University

  14. Eni G, Ibor OR, Andem AB, Oku EE, Chukwuka AV, Adeogun AO, Arukwe A (2019) Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comp Biochem Physiol C Toxicol Pharmacol 225:108584. https://doi.org/10.1016/j.cbpc.2019.108584

    CAS  Article  Google Scholar 

  15. Farrell AP, Johansen JA, Suarez RK (1991) Effects of exercise-training on cardiac performance and muscle enzymes in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 9(4):303–312. https://doi.org/10.1007/BF02265151

    CAS  Article  Google Scholar 

  16. Farrell AP (2008) Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. J Fish Biol 72:693–710. https://doi.org/10.1111/j.1095-8649.2007.01759.x

    Article  Google Scholar 

  17. Fong S, Louie S, Werner I, Davis J, Connon RE (2016) Contaminant effects on California Bay–Delta species and human health. San Franc Estuary Watershed Sci 14:4. https://doi.org/10.15447/sfews.2016v14iss4art5

    Article  Google Scholar 

  18. Gan J, Lee SJ, Liu WP, Haver DL, Kabashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841. https://doi.org/10.2134/jeq2004.0240

    CAS  Article  Google Scholar 

  19. Gibb AC, Dickson KA (2002) Functional morphology and biochemical indices of performance: is there a correlation between metabolic enzyme activity and swimming performance? Integr Comp Biol 42(2):199–207. https://doi.org/10.1093/icb/42.2.199

    CAS  Article  Google Scholar 

  20. Glaser JA, Foerst DL, McKee GD, Quave SA, Budde WL (1981) Trace analyses for wastewaters. Environ Sci Tech 15(12):1426–1435. https://doi.org/10.1021/es00094a002

    CAS  Article  Google Scholar 

  21. Goertler P, Jones K, Cordell J, Schreier B, Sommer T (2018) Effects of extreme hydrologic regimes on juvenile Chinook salmon prey resources and diet composition in a large river floodplain. Trans Am Fish Soc 147(2):287–299. https://doi.org/10.1002/tafs.10028

    Article  Google Scholar 

  22. Goertzen MM, Driessnack MK, Janz DM, Weber LP (2011) Swimming performance and energy homeostasis in juvenile laboratory raised fathead minnow (Pimephales promelas) exposed to uranium mill effluent. Comp Biochem Physiol C Toxicol Pharmacol 4:420–426. https://doi.org/10.1016/j.cbpc.2011.07.012

    CAS  Article  Google Scholar 

  23. Goulding AT, Shelley LK, Ross PS, Kennedy CJ (2013) Reduction in swimming performance in juvenile rainbow trout (Oncorhynchus mykiss) following sublethal exposure to pyrethroid insecticides. Comp Biochem Physiol C Toxicol Pharmacol 157:280–286. https://doi.org/10.1016/j.cbpc.2013.01.001

    CAS  Article  Google Scholar 

  24. Hong J, Kim HY, Kim DG, Seo J, Kim KJ (2004) Rapid determination of chlorinated pesticides in fish by freezing-lipid filtration, solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1038(1–2):27–35. https://doi.org/10.1016/j.chroma.2004.03.003

    CAS  Article  Google Scholar 

  25. Hunt L, Bonetto C, Marrochi N, Scalise A, Fanelli S, Liess M, Lydy MJ, Chiu MC, Resh VH (2017) Species at Risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Sci Total Environ 580:699–709. https://doi.org/10.1016/j.scitotenv.2016.12.016

    CAS  Article  Google Scholar 

  26. Hunt L, Bonetto C, Resh VH, Buss DF, Fanelli S, Marrochi N, Lydy MJ (2016) Insecticide concentrations in stream sediments of soy production regions of South America. Sci Total Environ 547:114–124. https://doi.org/10.1016/j.scitotenv.2015.12.140

    CAS  Article  Google Scholar 

  27. Jeffries KM, Komoroske LM, Truong J, Werner I, Hasenbein M, Hasenbein S et al. (2015) The transcriptome-wide effects of exposure to a pyrethroid pesticide on the Critically Endangered delta smelt Hypomesus transpacificus. Endanger Species Res 28(1):43–60. https://doi.org/10.3354/esr00679

    Article  Google Scholar 

  28. Jin Y, Lin X, Miao W, Wang L, Wu Y, Fu Z (2015) Oral exposure of pubertal male mice to endocrine-disrupting chemicals alters fat metabolism in adult livers. Far East Entomol 30:1434–1444. https://doi.org/10.1002/tox.22013

    CAS  Article  Google Scholar 

  29. Kumaraguru AK, Beamish FWH (1983) Bioenergetics of acclimation to permethrin (NRDC-143) by rainbow trout. Comp Biochem Physiol 75C:247–252

    CAS  Google Scholar 

  30. Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324:258–271. https://doi.org/10.1016/j.jhazmat.2016.10.056

    CAS  Article  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  32. Lu Z, Gan J, Cui X, Delgado-Moreno L, Lin K (2019) Understanding the bioavailability of pyrethroids in the aquatic environment using chemical approaches. Environ Int 129:194–207. https://doi.org/10.1016/j.envint.2019.05.035

    CAS  Article  Google Scholar 

  33. Magnuson JT, Giroux M, Cryder Z, Gan J, Schlenk D (2020a) The use of non-targeted metabolomics to assess the toxicity of bifenthrin to juvenile Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 224:105518. https://doi.org/10.1016/j.aquatox.2020.105518

    CAS  Article  Google Scholar 

  34. Magnuson JT, Cryder Z, Andrzejczyk NE, Harraka G, Wolf DC, Gan J, Schlenk D (2020b) Metabolomic profiles in brains of juvenile steelhead (Oncorhychus mykiss) following bifenthrin treatment. Environ Sci Tech 54(19):12245–12253. https://doi.org/10.1021/acs.est.0c04847

    CAS  Article  Google Scholar 

  35. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826. https://doi.org/10.1007/s00128-005-0824-7

    CAS  Article  Google Scholar 

  36. Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21:9–15. https://doi.org/10.1002/etc.5620210102

    CAS  Article  Google Scholar 

  37. Meador JP, Sommers FC, Ylitalo GM, Sloan CA (2006) Altered growth and related physiological responses in juvenile Chinook salmon (Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hydrocarbons (PAHs). Can J Fish Aquat Sci 63:2364–2376. https://doi.org/10.1139/F06-127

    CAS  Article  Google Scholar 

  38. Meyer BN, Lam C, Moore S, Jones RL (2013) Laboratory degradation rates of 11 pyrethroids under aerobic and anaerobic conditions. J Agric Food Chem 61:4702–4708. https://doi.org/10.1021/jf400382u

    CAS  Article  Google Scholar 

  39. Motomura H, Narahashi T (2000) Temperature dependence of pyrethroid modification of single sodium channels in rat hippocampal neurons. J Membr Biol 177(1):23–39. https://doi.org/10.1007/s002320001097

    CAS  Article  Google Scholar 

  40. Moustafa GG, Hussein MMA (2016) Lambda cyhalothrin toxicity induces alterations in lipogenic genes and inflammatory factors in rat liver. Jpn J Vet Res 64:25–38. https://doi.org/10.14943/jjvr.64.1.25

    Article  Google Scholar 

  41. Muir DC, Hobden BR, Servos MR (1994) Bioconcentration of pyrethroid insecticides and DDT by rainbow trout: uptake, depuration, and effect of dissolved organic carbon. Aquat Toxicol 29(3-4):223–240. https://doi.org/10.1016/0166-445X(94)90070-1

    CAS  Article  Google Scholar 

  42. Nasuti C, Cantalamessa F, Falcioni G, Gabbianelli R (2003) Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191:233–244. https://doi.org/10.1016/S0300-483X(03)00207-5

    CAS  Article  Google Scholar 

  43. Nowell L (2003) Organochlorine pesticides and PCBs in bed sediment and whole fish from United States rivers and streams: Summary statistics: preliminary results from cycle I of the National Water Quality Assessment Program (NAWQA 1992-2001). http://ca.water.usgs.gov/pnsp/oc_doc.html. Accessed 12 Dec 2020

  44. Olsvik PA, Larsen AK, Berntssen MHG, Goksøyr A, Karlsen OA, Yadetie F, Sanden M, Kristensen T (2019) Effects of agricultural pesticides in aquafeeds on wild fish feeding on leftover pellets near fish farms. Front Genet 10 https://doi.org/10.3389/fgene.2019.00794

  45. Sun BQ, Wang F, Li HZ, You J (2015) Occurrence and toxicity of sediment-associated contaminants in Guangzhou College City and its adjacent areas: the relationship to urbanization. Arch Environ Contam Toxicol 68(1):124–131. https://doi.org/10.1007/s00244-014-0097-4

    CAS  Article  Google Scholar 

  46. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Yan D et al. (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    CAS  Article  Google Scholar 

  47. Thangavel P, Sumathiral K, Karthikeyan S, Ramaswamy M (2005) Endocrine response of the freshwater teleost, Sarotherodon mossambicus (Peters) to dimecron exposure. Chemosphere 61(8):1083–1092. https://doi.org/10.1016/j.chemosphere.2005.03.045

    CAS  Article  Google Scholar 

  48. Tierney K, Casselman M, Takeda S, Farrell T, Kennedy C (2007) The relationship between cholinesterase inhibition and two types of swimming performance in chlorpyrifos-exposed coho salmon (Oncorhynchus kisutch). Environ Toxicol Chem 26:998–1004. https://doi.org/10.1897/06-459R.1

    CAS  Article  Google Scholar 

  49. Ullah S, Zuberi A, Alagawany M, Farag MR, Dadar M, Karthik K et al. (2018) Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. J Environ Manage 206:863–871. https://doi.org/10.1016/j.jenvman.2017.11.076

    CAS  Article  Google Scholar 

  50. US Environmental Protection Agency (2008) Reregistration eligibility decision for cypermethrin (revised 01/14/08). EPA, Washington, DC

    Google Scholar 

  51. Van Handel E (1985) Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc 1(3):302–304

    Google Scholar 

  52. Vijverberg HPM, vanden Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105–126. https://doi.org/10.3109/10408449009089875

    CAS  Article  Google Scholar 

  53. Wang D, Weston DP, Lydy MJ (2009) Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Talanta 78(4–5):1345–1351. https://doi.org/10.1016/j.talanta.2009.02.012

    CAS  Article  Google Scholar 

  54. Watanabe T (1982) Lipid nutrition in fish. Comp Biochem Physiol 73B:3–15

    CAS  Google Scholar 

  55. Werner I, Geist J, Okihiro M, Rosenkranz P, Hinton DE (2002) Effects of dietary exposure to the pyrethroid pesticide esfenvalerate on medaka (Oryzias latipes). Mar Environ Res 54(3–5):609–614. https://doi.org/10.1016/S0141-1136(02)00151-4

    CAS  Article  Google Scholar 

  56. Weston DP, Holmes RW, Lydy MJ (2009) Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ Pollut 157:287–294. https://doi.org/10.1016/j.envpol.2008.06.037

    CAS  Article  Google Scholar 

  57. Weston DP, Schlenk D, Riar N, Lydy MJ, Brooks ML (2015) Effects of pyrethroid insecticides in urban runoff on Chinook salmon, steelhead trout, and their invertebrate prey. Environ Toxicol Chem 34:649–657. https://doi.org/10.1002/etc.2850

    CAS  Article  Google Scholar 

  58. Xiang D, Chu T, Li M, Wang Q, Zhu G (2018) Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. Chemosphere 201:840–849. https://doi.org/10.1016/j.chemosphere.2018.03.009

    CAS  Article  Google Scholar 

  59. Yang JS, Qi W, Farias-Pereira R, Choi S, Clark JM, Kim D, Park Y (2019) Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food Chem Toxicol 125:595–604. https://doi.org/10.1016/j.fct.2019.02.005

    CAS  Article  Google Scholar 

  60. Yilmaz M, Gül A, Erbaşli K (2004) Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulata, Pallas, 1859). Chemosphere 56:381–385. https://doi.org/10.1016/j.chemosphere.2004.02.034

    CAS  Article  Google Scholar 

  61. You J, Lydy MJ (2007) A solution for isomerization of pyrethroid insecticides in gas chromatography. J Chromatogr A 1166:181–190. https://doi.org/10.1016/j.chroma.2007.08.014

    CAS  Article  Google Scholar 

  62. Zhang J, You J, Li H, Tyler Mehler W, Zeng EY (2018) Particle-scale understanding of cypermethrin in sediment: desorption, bioavailability, and bioaccumulation in benthic invertebrate Lumbriculus variegatus. Sci Total Environ 642:638–645. https://doi.org/10.1016/j.scitotenv.2018.06.098

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their thoughtful comments which improved the manuscript.

Funding

This research was funded through the California Department of Fish and Wildlife Proposition 1 Restoration Grant Program (#P1896015).

Author information

Affiliations

Authors

Contributions

All authors contributed to the production of the manuscript and research project.

Corresponding author

Correspondence to Michael J. Lydy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were performed in accordance with the Institutional Animal Care and Use Committee (Protocol number: 17-027) approved by Southern Illinois University IACUC. No studies with human participants are included in this research project.

Informed consent

All authors are aware of the informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuller, N., Magnuson, J.T., Huff Hartz, K.E. et al. Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha. Ecotoxicology 30, 257–267 (2021). https://doi.org/10.1007/s10646-021-02352-2

Download citation

Keywords

  • Cypermethrin
  • Chinook salmon
  • Swimming performance
  • Body burden