Mixture toxicity effects of chloramphenicol, thiamphenicol, florfenicol in Daphnia magna under different temperatures

A Correction to this article is available

This article has been updated

Abstract

Acute toxicities of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FLO) and their mixtures on Daphnia magna under two representative temperatures of the aquatic environment (20 and 25 °C) have been examined. Their toxicities depicted with an order of 72-h EC50 values were as follows: CAP > FLO > TAP and CAP ≈ FLO > TAP under 20 and 25 °C, separately. Furthermore, the acute toxicity significantly increased with the rise of temperature from 20 to 25 °C in nearly all separate and mixture phenicol antibiotics. Meanwhile, the most toxic combination under two different temperatures was diverse. The nature of toxicological interactions of phenicol antibiotic mixtures was analyzed by Combination Index (CI) equation. In general, a dual synergism-antagonism effect was dominant in nearly all mixtures at both temperatures. The prediction suitability of Concentration Addition (CA), Independent Action (IA) models, and CI method was compared, suggesting that the CI equation seems to be more appropriate for predicting the toxicity values of phenicol drugs than CA and IA models. In brief, phenicol antibiotic mixtures with temperature variation may pose more significant hazards and risks to aquatic organisms; hence, the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 21 January 2021

    A Correction to this paper has been published: https://doi.org/10.1007/s10646-021-02347-z

References

  1. Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38(23):6353–6362

    CAS  Google Scholar 

  2. Anadón A, Bringas P, Martinez-Larrañaga MR, Diaz MJ (1994) Bioavailability, pharmacokinetics and residues of chloramphenicol in the chicken. J Vet Pharmacol Ther 17(1):52–58

    Google Scholar 

  3. Bae E, Samanta P, Yoo J, Jung J (2016) Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna. Ecotoxicol Environ Saf 132:366–371

    CAS  Google Scholar 

  4. Berthoud H (2013) Synergy: a Concept in Search of a Definition. Endocrinology 154(11):3974–3977

    CAS  Google Scholar 

  5. Bliss CI (1939) The Toxicity of Poisons Applied Jointly. Ann Appl Biol 26(3):585–615

    CAS  Google Scholar 

  6. Boltes K, Rosal R, García-Calvo E (2012) Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated chemicals and lipid regulators. Chemosphere 86(1):24–29

    CAS  Google Scholar 

  7. Dalla Bona M, Lizzi F, Borgato A, De Liguoro M (2016) Increasing toxicity of enrofloxacin over four generations of Daphnia magna. Ecotoxicol Environ Saf 132:397–402

    CAS  Google Scholar 

  8. Carusso S, Juárez AB, Moretton J, Magdaleno A (2018) Effects of three veterinary antibiotics and their binary mixtures on two green alga species. Chemosphere 194:821–827

    CAS  Google Scholar 

  9. Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sørensen H (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 27(7):1621–1632

    CAS  Google Scholar 

  10. Chen C, Wang YH, Qian YZ, Zhao XP, Wang Q (2015) The synergistic toxicity of the multiple chemical mixtures: implications for risk assessment in the terrestrial environment. Environ Int 77:95–105

    CAS  Google Scholar 

  11. Choi K, Kim Y, Jung J, Kim MH, Kim CS, Kim NH, Park J (2008) Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ Toxicol Chem 27(3):711–719

    CAS  Google Scholar 

  12. CompuSyn for Drug Combinations. PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50, ED50, and LD50 Values, ComboSyn Inc, Paramus, NJ. http://www.combosyn.com

  13. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug-combination studies. Pharmacol Rev 58(3):621–628

    CAS  Google Scholar 

  14. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22(84):27–55

    CAS  Google Scholar 

  15. Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25(8):2208–2215

    CAS  Google Scholar 

  16. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    CAS  Google Scholar 

  17. De Liguoro M, Riga A, Fariselli P (2018) Synergistic toxicity of some sulfonamide mixtures on Daphnia magna. Ecotox Environ Safe 164:84–91

    Google Scholar 

  18. Deng WJ, Li N, Zheng HL, Lin HY (2016) Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicol Environ Saf 125:121–127

    CAS  Google Scholar 

  19. Du J, Zhao HX, Liu SS, Xie HJ, Wang Y (2017) Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks. Sci Total Environ 595:521–527

    CAS  Google Scholar 

  20. European Commission (1996) Council Directive 96/23/EC of 29 April 1996. Off. J. Eur. Commun. 5:L125. (1996) 10

    Google Scholar 

  21. Flach AJ (1982) Fatal aplastic anemia following topical administration of ophthalmic chloramphenicol. Am J Ophthalmol 93(3):356–360

    Google Scholar 

  22. Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61(2):200–207

    CAS  Google Scholar 

  23. Geiger E, Hornek-Gausterer R, Sacan MT (2016) Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicol Environ Saf 129:189–198

    CAS  Google Scholar 

  24. Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Valdes-Alanis A, Islas-Flores H, Neri-Cruz N (2014) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37(4):391–399

    Google Scholar 

  25. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47(6):2050–2064

    Google Scholar 

  26. Godoy A, Kummrow F (2017) What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Critic Rev Environ Sci Technol 47(16):1453–1496

    Google Scholar 

  27. Hamid N, Junaid M, Manzoor R, Jia PP, Pei DS (2020) Prioritizing Phthalate Esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. J Hazard Mater 398:122851

    CAS  Google Scholar 

  28. Hadrup N, Taxvig C, Pedersen M, Nellemann C, Hass U, Vinggaard AM (2013) Concentration Addition, Independent Action and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis In Vitro. Plos ONE 8(8):e70490

    CAS  Google Scholar 

  29. Heugens EH, Jager T, Creyghton R, Kraak MH, Hendriks AJ, Van Straalen NM, Admiraal W (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37(10):2145–2151

    CAS  Google Scholar 

  30. International Organization for Standardization (1996) Water quality. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)- Acute toxicity test. International Organisation for Standardisation. Geneva, Switzerland

  31. Jesús V, Georgiana A, Karina B, Maria ÁG, Maria LM (2019) Enantiomer stability and combined toxicity of duloxetine and econazole on Daphnia magna using real concentrations determined by capillary electrophoresis. Sci Total Environ 670:770–778

    Google Scholar 

  32. Jia J, Zhu F, Ma XH, Cao ZW, Li YX, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128

    CAS  Google Scholar 

  33. Kim J, Park J, Kim PG, Lee C, Choi K, Choi K (2010) Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology 19(4):662–669

    CAS  Google Scholar 

  34. Kristofco LA, Du BW, Chambliss CK, Berninger JP, Brooks BW (2015) Comparative Pharmacology and Toxicology of Pharmaceuticals in the Environment: Diphenhydramine Protection of Diazinon Toxicity in Danio rerio but Not Daphnia magna. AAPS J 17(1):175–183

    CAS  Google Scholar 

  35. Lai HT, Hou JH, Su CI, Chen CL (2009) Effects of Chlorarnphenicol, Florfenicol, and Thiamphenicol on Growth of Algae Chlorella Pyrenoidosa, Isochrysis Galbana, and Tetraselmis Chui. Ecotoxicol Environ Saf 72(2):329–334

    CAS  Google Scholar 

  36. Li WH, Gao LH, Shi YL, Liu JM, Cai YQ (2015) Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environ Sci Process Impacts 17(9):1611–1619

    CAS  Google Scholar 

  37. Li X (2010) Toxic effects of florfenicol and its analogues to aquatic organisms (In Chinese). Dissertation. Jinan University, Guangzhou, China

  38. Liu H, Zhang GP, Liu CQ, Li L, Xiang M (2009) The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. J Environ Monit 11(6):1199–1205

    CAS  Google Scholar 

  39. Liu YM, Liu SH, Zhang H, Gu YP, Li XS, He MY, Tan HH (2017) Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apismellifera. Chemosphere 184:806–811

    CAS  Google Scholar 

  40. Long X, Wang D, Lin Z, Qin M, Song C, Liu Y (2016) The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli: Differences in both the special target proteins of individual chemicals and their effective combined concentration. Chemosphere 158:193–203

    CAS  Google Scholar 

  41. Maceda-Veiga A, Webster G, Canals O, Salvadó H, Weightman AJ, Cable J (2015) Chronic effects of temperature and nitrate pollution on Daphnia magna: Is this cladoceran suitable for widespread use as a tertiary treatment? Water Res 83:141–152

    CAS  Google Scholar 

  42. Magdaleno A, Saenz ME, Juárez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78

    CAS  Google Scholar 

  43. Marcelina J, Wioletta P (2019) Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment. Ecotox Environ Safe 172:210–215

    Google Scholar 

  44. Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22(1):36–41

    CAS  Google Scholar 

  45. Martins A, Guimarães L, Guilhermino L (2013) Chronic toxicity of the veterinary antibiotic florfenicol to Daphnia magna assessed at two temperatures. Environ Toxicol Pharmacol 36(3):1022–1032

    CAS  Google Scholar 

  46. Mccarty LS, Borgert CJ (2006) Review of the toxicity of chemical mixtures containing at least one organochlorine. Regul Toxicol Pharmacol 45(2):104–118

    CAS  Google Scholar 

  47. Mitchell SE, Lampert W (2000) Temperature adaptation in a geographically widespread zooplankter Daphnia magna. J Evol Biol 13(3):371–382

    Google Scholar 

  48. Nagata T, Oka H (1996) Detection of residual chloramphenicol, florfenicol, and thiamphenicol in yellowtail fish muscles by capillary gas chromatography-mass spectrometry. J Agric Food Chem 44(5):1280–1284

    CAS  Google Scholar 

  49. Nieto E, Blasco J, González-Ortegón E, Drake P, Hampel M (2013) Is Atyaephyra desmarestii a useful candidate for lethal and sub-lethal toxicity tests on pharmaceutical compounds? J Hazard Mater 263:256–265

    CAS  Google Scholar 

  50. Nieto E, Hampel M, González-Ortegón E, Drake P, Blasco J (2016) Influence of temperature on toxicity of single pharmaceuticals and mixtures, in the crustacean A. desmarestii. J Hazard Mater 313:159–169

    CAS  Google Scholar 

  51. Noyes PD, Mcelwee MK, Miller HD, Clark BW, Tiem LAV, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    CAS  Google Scholar 

  52. Organization for Economic Co-operation and Development (2004) Guidelines for Testing of Chemicals. In Daphnia sp. Acute Immobilization Test. OECD, Paris

    Google Scholar 

  53. Organization for Economic Co-operation and Development (1997) Report of the final ring test of the Daphnia magna reproduction test; OECD Environmental Health and Safety Publications Series on Testing and Assessment 6., Vol. 16. OECD, Paris, France

    Google Scholar 

  54. Ou DY, Chen B, Chen CX, Chen XQ, Song PQ, Lin HS (2013) Distribution of antibiotics residue and resistant bacteria in the downstream and estuarine area in Jiulong River. China Environ Sci 33(12):2243–2250

    CAS  Google Scholar 

  55. Peng XZ, Wang ZD, Kuang WX, Tan JH, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371(1-3):314–322

    CAS  Google Scholar 

  56. Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, De Wael K (2015) Electro)Sensing of Phenicol Antibiotics - A Review. Crit Rev Food Sci Nutr 56(14):2416–2429

    Google Scholar 

  57. Ribeiro AR, Sures B, Schmidt TC (2018) Ecotoxicity of the two veterinarian antibiotics ceftiofur and cefapirin before and after photo-transformation. Sci Total Environ 619-620:866–873

    CAS  Google Scholar 

  58. Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24(2):423–430

    CAS  Google Scholar 

  59. Rodea-Palomares I, Petre AL, Boltes K, Leganés F, Antonio Perdigon-Melon J, Rosal R, Fernandez- Piñas F (2010) Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res 44(2):427–438

    CAS  Google Scholar 

  60. Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Petre A (2010). Ecotoxicological assessment of surfactants in the aquatic environment: Combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 81(2):288–293

  61. Rose S, Altenburger R, Sturm A (2016) Mixture toxicity effects of sea louse control agents in Daphnia magna. Chemosphere 144:599–606

    CAS  Google Scholar 

  62. Santos LHML, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1-3):45–95

    CAS  Google Scholar 

  63. Seidl MD, Pirow R, Paul RJ (2005) Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression. J Therm Biol 30(7):532–544

    CAS  Google Scholar 

  64. Sikkink KL, Ituarte CM, Reynolds R, Cresko WA, Phillips PC (2014) The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae. Genomics 104(6):438–446

    CAS  Google Scholar 

  65. The Ministry of Agriculture PRC (2002) Establishment of maximum residue levels of veterinary medicinal products in foodstuffs of animal origin (In Chinese), Regulation No. 235 http://www.moa.gov.cn/gk/tzgg_1/gg/200302/t20030226_59300.htm

  66. Trombini C, Hampel M, Blasco J (2016) Evaluation of acute effects of four pharmaceuticals and their mixtures on the copepod Tisbe battagliai. Chemosphere 155:319–328

    CAS  Google Scholar 

  67. Van Doorslaer X, Haylamicheal ID, Dewulf J, Van Langenhove H, Janssen CR, Demeestere K (2015) Heterogeneous photocatalysis of moxifloxacin in water: chemical transformation and ecotoxicity. Chemosphere 119:S75–S80

    Google Scholar 

  68. Van de Riet JM, Potter RA, Christie-Fougere M, Burns BG (2003) Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry. J Aoac Int 86(3):510–514

    Google Scholar 

  69. Viñas P, Balsalobre N, Hernández-Córdoba M (2006) Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection. Anal Chim Acta 558(1-2):11–15

    Google Scholar 

  70. Wang MX, Zhang YX, Guo PY (2017) Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae. Aquat Toxicol 186:67–76

    CAS  Google Scholar 

  71. Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40(7):723–730

    CAS  Google Scholar 

  72. Xu LW, Liao CR, Liu GF (2005) Security about florfenicol used in aquaculture. J Fishery Sci China 12(4):512–518

    CAS  Google Scholar 

  73. Xiong Q, Hu LX, Liu YS, Wang TT, Ying GG (2019) New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat Toxicol 207:197–207

    CAS  Google Scholar 

  74. Yiruhan, Wang QJ, Mo CH, Li YW, Gao P, Tai YP, Zhang Y, Ruan ZL, Xu JW (2010) Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ Pollut 158(7):2350–2358

    CAS  Google Scholar 

  75. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772–6782

    CAS  Google Scholar 

  76. Zhang Q, Xin Q, Zhu JM, Cheng JP (2014) The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts. Environ Chem 33(7):1075–1083

    CAS  Google Scholar 

  77. Zhang YX, Guo PY, Wu YM, Zhang XY, Wang MX, Yang SM, Sun YS, Deng J, Su HT (2019) Evaluation of the Subtle Effects and Oxidative Stress Response of Chloramphenicol, Thiamphenicol, and Florfenicol in Daphnia magna. Environ Toxicol Chem 38(3):575–584

    CAS  Google Scholar 

  78. Zong HM, Ma DY, Wang JY, Hu JT (2010) Research on Florfenicol Residue in Coastal Area of Dalian (Northern China) and Analysis of Functional Diversity of the Microbial Community in Marine Sediment. B Environ Contam Tox 84(2):245–249

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 20777021), the Natural Science Foundation of Fujian Province of China (No. 2017J01018), and the Quanzhou City Science & Technology Program of China (No. 2018Z003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peiyong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, P., Wang, M. et al. Mixture toxicity effects of chloramphenicol, thiamphenicol, florfenicol in Daphnia magna under different temperatures. Ecotoxicology 30, 31–42 (2021). https://doi.org/10.1007/s10646-020-02311-3

Download citation

Keywords

  • Phenicol antibiotics
  • Acute toxicity
  • Elevated temperature
  • Predictive models
  • Combination Index
  • Synergism