Skip to main content
Log in

Acute toxic and genotoxic effects of formalin in Danio rerio (zebrafish)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Formalin is a readily soluble chemical used as a sanitizing agent in the home and hospital. Formaldehyde solutions are routinely used in aquaculture for the prophylaxis and treatment of parasites and fungi, but the adverse effects of their application need to be further investigated. Danio rerio or zebrafish has characteristics favorable to its handling and breeding, and it is highly sensitive to various chemicals, being an ideal experimental model for this type of investigation. Thus, the objective of this study was to verify the toxic and genotoxic effects of formalin and to determine the lethal concentrations of this chemical to support its safe use in disinfection processes. Acute and chronic tests were performed using methods in accordance with international protocols. The genotoxic effect of formalin was evaluated with the micronucleus test using blood samples, which were collected at 96 and 192 h of exposure. The LC50–96h of formalin in D. rerio was 45.73 mg L−1, demonstrating its high resistance compared to other species. Regarding the genotoxic effect, the sublethal concentrations of formalin showed a positive correlation with micronuclei according to the increase in its concentration independent of the time of exposure. The incidence of micronuclei increased with concentration, and the addition of 1 mg L−1 formalin corresponded to an increase of 2.9% in the average number of micronuclei. In other words, formalin at even sublethal concentrations caused genotoxic effects in peripheral blood erythrocytes of D. rerio. Therefore, we recommend further studies and other tests involving this chemical for its use at environmentally safe concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ABNT - Associação Brasileira de Normas Técnicas (2016) NBR 15088, Ecotoxicologia aquática – Toxicidade aguda. Método de ensaio com peixes. ABNT, São Paulo

  • Agresti A (2007) An introduction categorical date analysis. 2nd ed. Wiley, New York, NY

  • Alimba CG, Bakare AA (2016) In vivo micronucleus test in the assessment of cytogenotoxicity of landfill leachates in three animal models from various ecological habitats. Ecotoxicology 25(2):310–319

    Article  CAS  Google Scholar 

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135

    Article  CAS  Google Scholar 

  • Andrade RLB, Andrade LS, Boscolo WR, Soares CM (2005) Comportamento, sobrevivência e desenvolvimento de lebistes, Poecillia reticulata, submetidos a agentes utilizados na profilaxia de doenças. Acta Sci. Anim Sci 27(4):523–528. https://doi.org/10.4025/actascianimsci.v27i4.1183

    Article  Google Scholar 

  • Andrade-Porto SM (2015) Formalina no controle de Dawestrema cycloancistrium (Monogenoidea) do Pirarucu Arapaima gigas (SCHINZ, 1822) (Arapaimidae) e seus efeitos toxicológicos, histopatológicos, fisiológicos e residuais. Doctoral Thesis. Instituto Nacional de Pesquisas da Amazônia, INPA, Brazil

  • APHA, AWWA, WPCF - American Public Health Association - APHA (2005) Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington DC

  • Araújo LD, Chagas EC, Gomes LC, Brandão FR (2004) Efeito de banhos terapêuticos com formalina sobre indicadores de estresse em tambaqui. Pesq Agropec Bras 39(3):217–221. https://doi.org/10.1590/S0100-204X2004000300003

    Article  Google Scholar 

  • ASTM - American Society for Testing and Materials (2014) Standard guide for conducting acute toxicity tests on testmaterials with fishes, macroinvertebrates, and amphibians. West Conshohocken, PA, pp 218–238, ASTM International

  • Boyd C, McNevin A (2015) Aquaculture, resource use, and the environment. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • Çavas T, Ergene-Gözükara S (2003) Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cytogenotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat Res 538:81–91. https://doi.org/10.1016/S1383-5718(03)00091-3

    Article  CAS  Google Scholar 

  • Davari H, Haddad F, Moghimi A, Rahimi MF, Ghavamnasiri MR (2012) Study of radioprotective effect of green tea against gamma irradiation using micronucleus assay on binucleated human lymphocytes. Iran J Basic Med Sci 15(5):1026–1031

    Google Scholar 

  • Diaz-Satizabal L, Magor BG (2015) Isolation and cytochemical characterization of melanomacrophages and melanomacrophage clusters from goldfish (Carassius auratus, L). Dev Comp Immunol 48:221–228

    Article  CAS  Google Scholar 

  • Dureza LA (1995) Toxicity of formalin and potassium permanganate to Oreochromis niloticus fry and fingerlings and subsequent gill pathology. U P Res Dig 2:357–358

    Google Scholar 

  • ECOTOX Data Base. (2006) Available in: <https://cfpub.epa.gov/ecotox>. Access in 26 Sept 2017

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95

    Article  CAS  Google Scholar 

  • Fenech M, Croot J (2002) Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient in human lymphocytes – evidence for breakage – fusion – bridge cycles in the cytokinesis – block micronucleus assay. Mutat Res 504:131–136

    Article  CAS  Google Scholar 

  • Ferreira CM, Guimarães HMB, Ranzani-Paiva MJ, Soares SR, Rivero DHRF, Saldiva PHN (2003) Hematological markers of copper toxicity in Rana catesbeiana tadpoles (Bullfrog). Rev Bras Toxicol 16(2):83–88

    CAS  Google Scholar 

  • Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    Article  CAS  Google Scholar 

  • Gándara F, Jover M, García-Gómez A (2002) Efecto del tratamiento con formol sobre el consumo de oxígeno de juveniles de seriola mediterránea Seriola dumerili (Risso, 1810). Bol Inst Esp Oceanogr 18(1-4):377–388

    Google Scholar 

  • Grisolia CK, Cordeiro CMT (2000) Variability in micronucleus induction with different mutagens applied to several species of fishes. Genet Mol Biol 23(1):235–239

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11(7):714–719. https://doi.org/10.1021/es60130a004

    Article  CAS  Google Scholar 

  • Harabawy A, Mosleh Y (2014) The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicol Environ Saf 104:28–35. https://doi.org/10.1016/j.ecoenv.2014.02.015

    Article  CAS  Google Scholar 

  • Hohreiter DW, Rigg DK (2001) Derivation of ambient water quality criteria for formaldehyde. Chemosphere 45:471–486

    Article  CAS  Google Scholar 

  • Howe K et al. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. https://doi.org/10.1038/nature12111

    Article  CAS  Google Scholar 

  • HSDB – Hazard Substances Data Base – Formaldehyde. Available in: <http://toxnet.nlm.nih.gov>. Access in 26 set. 2017

  • Intorre L, Meucci V, Di Bello D, Monni G, Soldani G, Pretti C (2007) Tolerance of benzalkonium chloride, formalin, malachite green, and potassium permanganate in goldfish and zebrafish. J Am Vet Med Assoc 231(4):590–595

    Article  CAS  Google Scholar 

  • Johnson ML, Berge RL, Philips L, Speare R (2003) Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ 57:255–260

    Article  CAS  Google Scholar 

  • Kaviraj A, Bhunia F, Saha NC (2004) Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem. Int J Toxicol 23(1):55–63

    Article  CAS  Google Scholar 

  • Kirsch-Volders M, Decordier I, Elhajouji A, Ardema MJ, Fenech M (2011) In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis 26(1):177–184. https://doi.org/10.1093/mutage/geq068

    Article  CAS  Google Scholar 

  • Kitchens JF, Casner RE, Edwards GS, William I, Harvard E, Macri BJ (1976) Investigation of Selected Potential Environmental Contaminants: Formaldehyde. US Environmental Protection Agency, Washington, D.C, p 217

    Google Scholar 

  • Klein S, Feiden A, Boscolo WR, Reidel A, Signor A, Signor AA (2004) Utilização de produtos químicos no controle de Ichthyophthirius multifiliis, Fouquet (1876) em alevinos de surubim do Iguaçu Steindachneridion sp., Garavello (1991). Semin, Ciênc Agrár 25(1):51–58

    Google Scholar 

  • Leal JF, Neves MGPMS, Santos EBH, Esteves VI (2018) Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Rev Aquacult 10:281–29. https://doi.org/10.1111/raq.12160

    Article  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev 8:354–367

    Article  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R.A. practical guide. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131. https://doi.org/10.3389/fgene.2013.00131

    Article  Google Scholar 

  • Maris P (1995) Modes of action of disinfectants. Rev - Int Epizoot 14(1):47–55

    CAS  Google Scholar 

  • Mccollum CW, Ducharme NA, Bondesson M, Gustafsson J (2011) Developmental toxicity screening in Zebrafish. Birth Defects Res C Embryo Today 93(2):67–114. https://doi.org/10.1002/bdrc.20210

    Article  CAS  Google Scholar 

  • Mohammed VSN, Sheriff AM, Mohideen SAK, Azmathullah NM (2012) Toxicity of formalin on behaviour and respiration in Danio rerio. Int J Environ Sci 2:1904–1908

    Google Scholar 

  • Nakagome FK, Noldin JA, Resgalla C (2007) Toxicidade aguda de alguns herbicidas e inseticidas utilizados em lavouras de arroz irrigado sobre o peixe Danio rerio Ecotox Meio Ambiente 17:117–122. https://doi.org/10.5380/pes.v17i0

    Article  CAS  Google Scholar 

  • Pacheco M, Santos MA (1997) Induction of EROD activity and genotoxic effects by polycyclic aromatic hydrocarbons and resin acids on the juvenile eel (Anguilla anguilla L.). Ecotoxicol Environ Saf 38:252–259. https://doi.org/10.1006/eesa.1997.1585

    Article  CAS  Google Scholar 

  • Paixão LF, Santos RFB, Ramos FM, Fujimoto RY (2013) Efeitos do tratamento com formalina e sulfato de cobre sobre os parâmetros hematológicos e parasitos monogenéticos em juvenis de Hemigrammus sp. (Osteichthyes: Characidae). Acta Amaz 43(2):211–216

    Article  Google Scholar 

  • Pavanelli G, Eiras JC, Takemoto RM (2008) Doenças de Peixes: Profilaxia, Diagnóstico e Tratamento. 3rd ed. Eduem, Maringá, Paraná, Brasil

  • Pironet FN, Jones JB (2000) Treatments for ectoparasites and diseases in captive Western Australian huffish. Aquac Int 81:349–361

    Article  Google Scholar 

  • Rutala WA, Weber DJ (2008) Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for disinfection and sterilization in healthcare facilities. Center for Disease Control and Prevention (CDC), Atlanta, p 158

    Google Scholar 

  • Santana JM, Reis A, Teixeira PC, Ferreira FC, Ferreira CM (2015) Median lethal concentration of formaldehyde and its genotoxic potential in bullfrog tadpoles (Lithobates catesbeianus). J Environ Sci Health B 50:1–5. https://doi.org/10.1080/03601234.2015.1067095

    Article  CAS  Google Scholar 

  • Santos RBS, Tavares-Dias M (2010) Células sanguíneas e resposta hematológica de Oxydoras niger (pisces, doradidae) oriundos da bacia do médio rio Solimões, estado do Amazônas (Brasil), naturalmente parasitados. Bol Inst Pesca 36(4):283–292

    Google Scholar 

  • Shimizu N, Shimuara T, Tanaka T (2003) Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat Res 448:81–90

    Article  Google Scholar 

  • Soares SR, Bueno-Guimarães HM, Ferreira CM, Rivero DHRF, Garcia ML, Saldiva PHN (2003) Urban air pollution induces micronuclei in peripheral erythrocytes of mice in vivo. Environ L Res 92:191–196

    Article  CAS  Google Scholar 

  • De Swaef E, Den Broeck WV, Dierckens K, Decostere A (2015) Disinfection of teleost eggs: a review. Aquaculture 7:1–21. https://doi.org/10.1111/raq.12096

    Article  Google Scholar 

  • Tolbert PE, Shy CM, Allen JW (1992) Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res 271:69–77

    Article  CAS  Google Scholar 

  • Vargas L, Povh JP, Ribeiro RP, Moreira HLM, Loures BTRR, Maroneze MS (2003) Efeito do tratamento com cloreto de sódio e formalina na ocorrência de ectoparasitas em alevinos de tilápia do Nilo (Oreochromis niloticus) revertidos sexualmente. Arq Ciênc Vet Zool UNIPAR 6(1):39–48

    Google Scholar 

  • World Health Organization (WHO) (2006) Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol. International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans, Lyon, France

Download references

Acknowledgements

We thank Coordenação de Aperfeiçoamento de Nível Superior (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André Sangineto Resendes or Cláudia Maris Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was developed under ethical conditions and in accordance with national, international and institutional guidelines on the use of animals in the research. It was funded by the Coordination for the Improvement of Higher Education Personnel - CAPES - Brazil (grant number 33132011001P9). We inform that it is an original work and all the authors approve this submission and contributed integrally to the development of the study and construction of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resendes, A.S., dos Santos, D.S., França, F.M. et al. Acute toxic and genotoxic effects of formalin in Danio rerio (zebrafish). Ecotoxicology 27, 1379–1386 (2018). https://doi.org/10.1007/s10646-018-1993-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1993-6

Keywords

Navigation