Skip to main content
Log in

The behaviour of the nematode, Steinernema feltiae (Nematoda: Steinernematidae) in sand contaminated with the industrial pollutant chromium VI

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study set out to determine the suitability of the nematode Steinernema feltiae as a bioindicator for heavy metal pollution, specifically chromium VI. Nematodes were introduced into sand contaminated with concentrations of Cr VI+, in a range between 10 and 100 ppm, in increments of 10. Reproductive potential, development times and infectivity vs exposure times to Cr VI were employed as endpoints. It was observed that infective juveniles (IJ) from this nematode can survive and successfully infect host insects in the presence of Cr VI for as much as 13 days, and that the nematode increases its reproductive potential at concentrations up to 100 ppm Cr VI+. Conversely, development times (time in days taken for progeny to emerge after larval host death) and IJ infectivity rates were observed to reduce with increasing concentrations of Cr VI. The ability of this nematode to survive in the presence of high concentrations of Cr VI, and its ability to increase progeny numbers at the early stages of Cr VI exposure may provide a survival advantage for this nematode at contaminated sites. It may also demonstrate potential for development as a model species for toxicological assessment in in-situ field sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • American society of testing and materials - ASTM E2172-01 (2014). Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans. ASTM International, West Conshohocken, PA, USA, 2014. http://www.astm.org

  • Anderson GL, Boyd WA, Williams PL (2001) Assessment of sub-lethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20(4):833–838

    Article  CAS  Google Scholar 

  • Bakonyi G, Nagy P, Kadar In (2003) Long term affects of heavy metals and microelements on nematode assemblages. Toxicol Lett 140-141:391–401

    Article  CAS  Google Scholar 

  • Balasubramanian S, Pugalenthi V (1999) Determination of total chromium in tannery waste water by inductivity coupled with plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods. Talanta 50:457–467

    Article  CAS  Google Scholar 

  • Barceloux D (1999) Chromium. Clinic Toxicol 37(2):173–194

    CAS  Google Scholar 

  • Black MC, Williams PL (2001) Preliminary assessment of metal toxicity in the middle Tisza River (Hungary) flood plain. J Soils Sed 1(4):213–216

    Article  CAS  Google Scholar 

  • Boemare NE, Akhurst RJ (1990) Physiology of phase variation in Xenorhabdus pp. Proc Int Colloq Invert Pathol Micro Control 5:208–212

    Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Evol Ecol 14:224–228

    Article  CAS  Google Scholar 

  • Boyd WA, Stringer VA, Williams PL (2001) Metal LC50’s of a soil nematode compared to published earthworm data. In: Greenberg BM, Hull RN, Roberts Jr. MH, Gensemer RW Eds Environmental toxicology and risk assessment: science, policy, and standardisation—implications for environmental decisions: tenth volume, ASTM STP 1403. American Society for Testing and Materials, West Conshohocken, PA, p 2001

    Google Scholar 

  • Boyd WA, Williams PL (2003a) Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions. Environ Toxicol Chem 22(5):1100–1106

    Article  CAS  Google Scholar 

  • Boyd WA, Williams PL (2003b) Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity species. Environ Toxicol Chem 22(11):2768–2774

    Article  CAS  Google Scholar 

  • Boyle S, Kakouli-Duarte T (2008) The effects of chromium VI on the fitness and on the beta-tubulin genes during in-vivo development of the nematode Steinernema feltiae. Sci Total Environ 404:56–67

    Article  CAS  Google Scholar 

  • Brown RL, Bowman RS, Kieft TL (1994) Microbial effects of nickel and cadmium sorption and transport in vocanic tuff. J Environ Qual 23:723–729

    Article  CAS  Google Scholar 

  • Coleman RN (1988) Chromium toxicity: effects in microorganisms with special reference to the soil matrix. In: Nriagu JO, Nieboer E (Eds) Chromium in natural and human environments. Wiley-InterScience, New York, NY, pp 335–350

    Google Scholar 

  • Dhawan R, Dusenbery DB, Williams PL (1999) Comparison of lethality, reproduction and behaviour as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health, Part A 58:451–462

    Article  CAS  Google Scholar 

  • Dillon A, Griffin C, Downes M (1999) Hylobius Interest Group activity report No. 2. Second meeting of the Hylobius Interest Group. National University of Ireland, Maynooth

  • Donkin SG, Dusenbery DB (1994) Using the Caenorhabditis elegans soils toxicity test to identify factors affecting toxicity of four metal ions in intact soil. Water Air Soil Pollut 78:359–373

    Article  CAS  Google Scholar 

  • Eagon GR (1984) The resistance characteristics of Pseudomonads. Developments in industrial microbiology 25:337–348

    CAS  Google Scholar 

  • Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L (2006) The effects of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 76:246–257

    Article  CAS  Google Scholar 

  • Grewal P, Converse V, Georgis R (1999) Influence of production and bioassay methods on infectivity of two ambush foragers (Nematoda: Steinernematidae). J Invertebr Pathol 73:40–44

    Article  CAS  Google Scholar 

  • Griffin C, Moore J, Downes M (1991) Occurrence of insect-parasitic nematodes (Heterorhabditidae, Steinernematidae) in the Republic of Ireland. Nematologica 37:92–100

    Article  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450

    Article  CAS  Google Scholar 

  • Harmon SM, Wyatt DE (2008) Evaluation of post-Katrina flooded soils for contaminants and toxicity to the soil invertebrates Eisenia fetida and Caenorhabditis elegans. Chemosphere 70:1857–1864

    Article  CAS  Google Scholar 

  • Hazir S, Stock P, Kaya H, Koppenhofer A, Keskin N (2001) Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J Invertebr Pathol 77:243–250

    Article  CAS  Google Scholar 

  • Hitchcock DR, Black MC, Williams PL (1997) Investigations into using the nematode Caenorhabditis elegans for municipal and industrial wastewater toxicity testing. Arch Environ Contam Toxicol 33:252–260

    Article  CAS  Google Scholar 

  • Jaworska M, Gorczyca A (2000) The effects of metal ions on mortality, pathogenicity and reproduction of entomopathogenic nematodes Steinernema feltiae Filipjev (Rhabditida, Steinernematidae). Pol J Environ Stud 11:517–519

    Google Scholar 

  • Kammenga JE, Riksen JAG (1996) Comparing differences in species sensitivity to toxicants: phenotypic plasticity versus concentration—response relationships. Environ Toxicol Chem 15:1649–1653

    Article  CAS  Google Scholar 

  • Kammenga JE, Vankoert PHG, Riksen JAG, Korthals GW, Bakker JA (1996) A toxicity test in artificial soil based on the life history strategy of the nematode Plectus acuminates. Environ Toxicol Chem 15:722–727

    Article  CAS  Google Scholar 

  • Khanna N, Cressman III CP, Tatara CP, Williams PL (1997) Tolerance of the nematode Caenorhabditis elegans to pH, salinity and hardness in aquatic media. Arch Environ Contam Toxicol 32:110–114

    Article  CAS  Google Scholar 

  • Korthals GW, van der Ende A, van Megen H, Lexmond TM, Kammenga JE, Bongers T (1996) Short term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life history strategy groups. Appl Soil Ecol 4:107–117

    Article  Google Scholar 

  • Lewis EE, Shapiro-Ilan DI (2002) Host cadavers protect entomopathogenic nematodes during freezing. J Invert Pathol 81:25–32

    Article  Google Scholar 

  • Lind DA, Marchal WG, Wathen SA (2006) Basic statistics in business and economics. McGraw-Hill/Irwin, Boston, USA

  • Lokke H, van Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester

    Google Scholar 

  • Malakhov VV (1994) Nematodes, structure, development, classification and phylogeny. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • McGrath D, Carton O, Diamond S, O’Sullivan A, Murphy W, Rogers P, Parle P, Byrne E (2001) Investigation of animal health problems at Askeaton, Co. Limerick: soil, herbage, feed and water. EPA, Johnstown Castle Estate, Wexford, Ireland

    Google Scholar 

  • Millward RN, Carman KR, Fleeger JW, Gambrell RP, Rodney TP, Rouse M-AM (2001) Linking ecological impact to metal concentrations and speciation: a microcosm experiment using a salt marsh meiofaunal community. Environ Toxicol Chem 20(9):2029–2037

    Article  CAS  Google Scholar 

  • Nagy P, Bakonyi G, Bongers T, Kadar I, Fabian M, Kiss I (2004) Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field. Sci Environ 320:131–143

    CAS  Google Scholar 

  • Norseth T (1981) The carcinogenicity of chromium. Eviron Health Perspect 40:121–130

    Article  CAS  Google Scholar 

  • O’Brien TJ, Fornsaglio JL, Patierno SR (2002) Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae. DNA Repair 1:617–627

    Article  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2009) Bioasorption of chromium VI and nickel (II) by bacterial isolates from an aqueous solution. Electron J Environ, Agric Food Chem 8(3):150–156

    CAS  Google Scholar 

  • Peredney CL, Williams PL (2000) Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch Environ Contam Toxicol 39:113–8

    CAS  Google Scholar 

  • Perez E, Lewis E, Shapiro-Ilan D (2004) Effect of application method on fitness of entomopathogenic nematodes emerging at different times. J Nem 36:534–539

    CAS  Google Scholar 

  • Perez-Benito JF (2006) Effects of chromium VI and vanadium V in the lifespan of fish. J Trace Elem Med Biol 20:161–170

    Article  CAS  Google Scholar 

  • Pionar G (1990) Taxonomy and biology of Steinernematidae and Heterhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control, CRC Press Boca Raton, FL, USA, pp 23–61

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    Article  CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, del Carmen Rios de Molina M (2006) Effects of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358

    Article  CAS  Google Scholar 

  • Rolston A (2004) Distribution, relatedness, fitness and behaviour of entomopathogenic nematodes from Bull Island, Dublin. PhD thesis. National University of Ireland, Maynooth, Ireland

  • Ruppert EE, Barnes RD (1994). Invertebrate Zoology, 6th edn. Saunders College Publishing, Harcourt Brace and Company. Orlando, Florida, USA

  • Shrivastava R, Upreti RK, Seth PK, Chaturvedi UV (2002) Effects of chromium on the immune system. FEMS Immun Med Micro 34:1–7

    Article  CAS  Google Scholar 

  • Sochova I, Hofman J, Holoubek I (2007) Effects of seven organic pollutants on soils nematode Caenorhabditis elegans. Environ Intern 33:798–804

    Article  CAS  Google Scholar 

  • Sorensen MA, Jensen PD, Walton WE, Trumble JT (2006) Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae). Environ Pollut 144:759–764

    Article  CAS  Google Scholar 

  • Sivakumar S, Subbhuraam V (2005) Toxicity of chromium(III) and chromium(VI) to the earthworm Eisenia fetida. Ecotoxicol Environ Saf 62:93–98

    Article  CAS  Google Scholar 

  • Van Gestel CAM, van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimback F (eds) Ecotoxicology of soil organisms. CRC Press, Inc., Boca Ranton, pp 205–228

    Google Scholar 

  • van Straalen NM, Van Gestel CAM (1993) Soil invertebrates and microorganisms. In: Calow P (ed) Handboook of ecotoxicology, Vol. 1. Blackwell Publishing. Oxford, UK, pp 251–276

  • Vasanthy M (2004) An investigation on removal of chromium VI using bacterial strains. Asian J Microbiol Biotech Env Sci 7(1):38–46

    Google Scholar 

  • van Vliet CJ, de Goede GM (2008) Nematode-based risk assessment of mixture toxicity in a moderately polluted river floodplain in the Netherlands. Sci Total Environ 406:449–454

    Article  CAS  Google Scholar 

  • Velma v, Vutukuru S, Tchounwou p (2009) Ecotoxicology of Hexavalent Chromium in Freshwater Fish: A Critical Review. Rev Envrion Health 24(2):129–145

    CAS  Google Scholar 

  • Wang DY, Wang Y (2008) Phenotypic and behavioural defects caused by Barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 54:447–453

    Article  CAS  Google Scholar 

  • Weiss B, Larink O (1991) Influence of sewage sludge and heavy metals on nematodes in an arable soil. Biol Fert Soils 12:5–9

    Article  CAS  Google Scholar 

  • Williams P, Dusenbery D (1990) Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ Toxicol Chem 9:1285–1290

    Article  CAS  Google Scholar 

  • WHO Document (2000) Chapter 6.4; chromium. Air Quality Guidelines. World Health Organsiation Regional Office for Europe, Copenhagen, Denmark

  • Womersley CZ (1993) Factors affecting physiological fitness and modes of survival employed by dauer juveniles and their relationship to pathogenicity. In: Bedding R, Akhurst R, Kaya H (eds.) Nematodes and the biological control of insect pests. CSIRO, East Melbourne, Victoria, Australia, pp 79–88

    Google Scholar 

  • White G (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302

    Article  CAS  Google Scholar 

  • Yoder C, Grewal P, Taylor A (2004) Rapid age-related changes in infection behaviour of entomopathogenic nematodes. J Parasitol 90:1229–1234

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Environmental Protection Agency (EPA) Ireland under the ERTDI Postdoctoral Fellowship Programme, Ref No: 2008-FS-28-M1 and the STRIVE programme 2006–2013. The authors would like to thank Ms. Laura Mestre Alvarez for her invaluable assistance with the laboratory work. We also wish to thank the anonymous reviewers for the interesting and challenging comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Boyle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was required for this reported work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, S., Kakouli-Duarte, T. The behaviour of the nematode, Steinernema feltiae (Nematoda: Steinernematidae) in sand contaminated with the industrial pollutant chromium VI. Ecotoxicology 27, 590–604 (2018). https://doi.org/10.1007/s10646-018-1932-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1932-6

Keywords

Navigation