, Volume 25, Issue 5, pp 991–999 | Cite as

Individual and combined toxic effects of herbicide atrazine and three insecticides on the earthworm, Eisenia fetida

  • Yanhua Wang
  • Xuehua An
  • Weifeng Shen
  • Liezhong Chen
  • Jinhua Jiang
  • Qiang Wang
  • Leiming Cai


In the present study, we evaluated the individual and combined toxic effects of herbicide atrazine and three insecticides (chlorpyrifos, lambda-cyhalothrin and imidacloprid) on the earthworm, Eisenia fetida. Results from 48-h filter paper test indicated that imidacloprid had the highest toxicity to E. fetida with an LC50 of 0.05 (0.041–0.058) μg a.i. cm−2, followed by lambda-cyhalothrin and atrazine with LC50 values ranging from 4.89 (3.52–6.38) to 4.93 (3.76–6.35) μg a.i. cm−2, while chlorpyrifos had the least toxicity to the worms with an LC50 of 31.18 (16.22–52.85) μg a.i. cm−2. Results from 14-days soil toxicity test showed a different pattern of toxicity except that imidacloprid was the most toxic even under the soil toxicity bioassay system. The acute toxicity of atrazine was significantly higher than that of chlorpyrifos. In contrast, lambda-cyhalothrin was the least toxic to the animals under the soil toxicity bioassay system. The binary mixture of atrazine–lambda-cyhalothrin and ternary mixture of atrazine–chlorpyrifos–lambda-cyhalothrin displayed a significant synergistic effect on the earthworms under the soil toxicity bioassay. Our findings would help regulatory authorities understand the complexity of effects from pesticide mixtures on non-target organisms and provide useful information of the interaction of various pesticide classes detected in natural environment.


Soil invertebrate Ecotoxicology Pesticide Combined toxicity Acute toxicity 



The study was funded by the National Natural Science Foundation of China (Grant Nos. 31401767 and 31572028), the Application Research Project of the Public Interest in Zhejiang Province (Grant No. 2015C32047), and Zhejiang Province Major Bidding Project (Grant No. 2014C02002). The authors acknowledge the help provided by Huixian Rao and Biqi Xu in the laboratorial experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Any studies in this paper using earthworms were conducted in accordance with national and institutional guidelines for the protection of human subjects and animal welfare.


  1. Anderson TD, Lydy MJ (2002) Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem 21:1507–1514CrossRefGoogle Scholar
  2. Anderson TD, Zhu KY (2004) Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera: Chironomidae). Pestic Biochem Physiol 80:54–64CrossRefGoogle Scholar
  3. Bjergager MB, Hanson ML, Solomon KR, Cedergreen N (2012) Synergy between prochloraz and esfenvalerate in Daphnia magna from acute and subchronic exposures in the laboratory and microcosms. Aquat Toxicol 110–111:17–24CrossRefGoogle Scholar
  4. Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–190CrossRefGoogle Scholar
  5. Chen C, Wang YH, Qian YZ, Wang Q (2015) The synergistic toxicity of the multiple chemical mixtures: implications for risk assessment in the terrestrial environment. Environ Int 77:95–105CrossRefGoogle Scholar
  6. Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, TaichungGoogle Scholar
  7. Choung CB, Hyne RV, Stevens MM, Hose GC (2011) Toxicity of the insecticide terbufos its oxidation metabolites and the herbicide atrazine in binary mixtures to Ceriodaphnia cf dubia. Arch Environ Contam Toxicol 60:417–425CrossRefGoogle Scholar
  8. Daam MA, Leitão S, Cerejeira MJ, Paulo Sousa J (2011) Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida. Chemosphere 85:1040–1047CrossRefGoogle Scholar
  9. Dabrowski JM, Shadung JM, Wepener V (2014) Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environ Int 62:31–40CrossRefGoogle Scholar
  10. De Silva PMCS, van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 77:1609–1613CrossRefGoogle Scholar
  11. Edwards CA, Bohlen PJ (1992) The effects of toxic chemicals on earthworms. Rev Environ Contam Toxicol 125:23–99Google Scholar
  12. EEC (1985) EEC Directive 79/831 Annex V Part C: methods for the determination of ecotoxicity Level I C (L1) 4: toxicity for earthwormsGoogle Scholar
  13. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  14. Ellis SR, Hodson ME, Wege P (2010) The soil-dwelling earthworm Allolobophora chlorotica modifies its burrowing behaviour in response to carbendazim applications. Ecotoxicol Environ Saf 73:1424–1428CrossRefGoogle Scholar
  15. Fuchs J, Piola L, Prieto Gonzalez E, Oneto ML, Basack S, Kesten E, Casabe N (2011) Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT). Environ Monit Assess 175:127–137CrossRefGoogle Scholar
  16. Grumiaux F, Demuynck S, Schikorski D, Lemière S, Leprêtre A (2010) Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Chemosphere 79:156–161CrossRefGoogle Scholar
  17. Gupta RD, Chakravorty PP, Kaviraj A (2011) Susceptibility of epigeic earthworm Eisenia fetida to agricultural application of six insecticides. Chemosphere 84:724–726CrossRefGoogle Scholar
  18. Hackenberger BK, Jarić-Perkušić D, Stepić S (2008) Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicol Environ Saf 71:583–589CrossRefGoogle Scholar
  19. Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures endocrine disruption and amphibian declines: are we underestimating the impact? Environ Health Perspect 114(Suppl 1):40–50CrossRefGoogle Scholar
  20. Heimbach F (1984) Correlation between three methods for determining the toxicity of chemicals to earthworms. Pestic Sci 15:605–611CrossRefGoogle Scholar
  21. Heimbach F (1998) Comparison of the sensitivities of an earthworm (Eisenia foetida) reproduction test and a standardised field test on grassland. In: Sheppard S, Bembridge J, Holmstrup M, Posthuma L (eds) Advances in earthworm ecotoxicology. SETAC Press, Pensacola, pp 235–245Google Scholar
  22. Inglesfield C (1984) Toxicity of the pyrethroid insecticides cypermethrin and WL85871 to the earthworm Eisenia fetida (Savigny). Bull Environ Contam Toxicol 33:568–570CrossRefGoogle Scholar
  23. ISO (1993) Soil quality-effects of pollutants on earthworms (Eisenia fetida) Part 1: determination of acute toxicity using artificial soil substrate, Geneva, Switzerland ISO: 11268-1Google Scholar
  24. Jensen J, Diao XP, Scott-fordsmand JJ (2007) Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker. Chemosphere 68:744–750CrossRefGoogle Scholar
  25. Jeschke P, Nauen R (2008) Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci 64:1084–1098CrossRefGoogle Scholar
  26. Jin-Clark Y, Anderson TD, Zhu KY (2008) Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 54:645–652CrossRefGoogle Scholar
  27. Kao LM, Wilkinson CF, Brattsten LB (1995) In-vivo effects of 2,4-D and atrazine on cytochrome P-450 and insecticide toxicity in southern armyworm (Spodoptera eridania) larvae. Pestic Sci 45:331–334CrossRefGoogle Scholar
  28. Landrum M, Cañas JE, Coimbatore G, Cobb GP, Jackson WA, Zhang BH, Anderson TA (2006) Effects of perchlorate on earthworm (Eisenia fetida) survival and reproductive success. Sci Total Environ 363:237–244CrossRefGoogle Scholar
  29. Liang JD, Zhou QX (2003) Single and binary-combined toxicity of methamidophos, acetochlor and copper acting on earthworm Eisenia foelide. Bull Environ Contam Toxicol 71:1158–1166Google Scholar
  30. Luo Y, Zang Y, Zhong Y, Kong ZM (1999) Toxicological study of two novel pesticides on earthworm Eisenia foetida. Chemosphere 39:2347–2356CrossRefGoogle Scholar
  31. Lydy MJ, Linck SL (2003) Assessing the impact of triazine herbicides on organophosphate insecticide toxicity to the earthworm Eisenia fetida. Arch Environ Contam Toxicol 45:343–349CrossRefGoogle Scholar
  32. Ma WC, Bodt J (1993) Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull Environ Contam Toxicol 50:864–870CrossRefGoogle Scholar
  33. Marking LL (1985) Toxicity of chemical mixtures. In: Rand G, Petroceli S (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington, pp 164–176Google Scholar
  34. Mosleh YY, Ismail SMM, Ahmed MT, Ahmed YM (2003) Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions. Environ Toxicol 18:338–346CrossRefGoogle Scholar
  35. Narahashi T (2000) Neuroreceptors and ion channels as the basis for drug action: past present and future. J Pharmacol Exp Ther 294:1–26Google Scholar
  36. OECD (1984) OECD guideline for testing of chemicals no 207 earthworm, acute toxicity tests. OECD, ParisCrossRefGoogle Scholar
  37. OECD (2004) Guideline for testing of chemicals no 222 earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD, ParisCrossRefGoogle Scholar
  38. Pérez J, Monteiro MS, Quintaneiro C, Soares AM, Loureiro S (2013) Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity. Aquat Toxicol 144–145:296–302CrossRefGoogle Scholar
  39. Phyu YL, Palmer CG, Warne MS, Hose GC, Chapman JC, Lim RP (2011) A comparison of mixture toxicity assessment: examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf dubia. Chemosphere 85:1568–1573CrossRefGoogle Scholar
  40. Piner P, Üner N (2012) Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environ Toxicol Pharm 33:414–420CrossRefGoogle Scholar
  41. Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabé N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91:545–551CrossRefGoogle Scholar
  42. Pizl V (1988) Internations between earthworms and toxicity of some herbicides to earthworms in laboratory tests. Pedobiologia 32:227–232Google Scholar
  43. Reinecke SA, Reinecke AJ (2007) The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Ecotoxicol Environ Saf 66:244–251CrossRefGoogle Scholar
  44. Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ Toxicol Chem 3:67–78CrossRefGoogle Scholar
  45. Sánchez-Hernández JC (2006) Earthworm biomarkers in ecological risk assessment. Rev Environ Contam Toxicol 188:85–126Google Scholar
  46. Sanchez-Hernandez JC, Narvaez C, Sabat P, Mocillo SM (2014) Integrated biomarker analysis of chlorpyrifos metabolism and toxicity in the earthworm Aporrectodea caliginosa. Sci Total Environ 490:445–455CrossRefGoogle Scholar
  47. Saxena PN, Gupta SK, Murthy RC (2014) Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida—a possible mechanism. Ecotoxicol Environ Saf 100:218–225CrossRefGoogle Scholar
  48. Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–159Google Scholar
  49. Stepić S, Hackenberger BK, Velki M, Lončarić Ž, Hackenberger DK (2013) Effects of individual and binary-combined commercial insecticides endosulfan, temephos, malathion and pirimiphos-methyl on biomarker responses in earthworm Eisenia andrei. Environ Toxicol Pharm 36:715–723CrossRefGoogle Scholar
  50. Thompson HM (1996) Interactions between pesticides; a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology 5:59–81CrossRefGoogle Scholar
  51. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364CrossRefGoogle Scholar
  52. Tripathi G, Kachhwaha N, Dabi I (2010) Comparative studies on carbofuran-induced changes in some cytoplasmic and mitochondrial enzymes and proteins of epigeic, anecic and endogeic earthworms. Pestic Biochem Physiol 96:30–35CrossRefGoogle Scholar
  53. Udovic M, Lestan D (2010) Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ Pollut 158:2766–2772CrossRefGoogle Scholar
  54. Wahanthaswamy MV, Patil BV (2004) Toxicity of pesticides to earthworm, Eudrillus eugeniae (Kinberg). Karnataka J Agric Sci 17:112–114Google Scholar
  55. Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012a) A Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128CrossRefGoogle Scholar
  56. Wang Y, Wu S, Chen L, Wu C, Yu R, Wang Q, Zhao X (2012b) Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 88:484–491CrossRefGoogle Scholar
  57. Wang Y, Chen C, Qian Y, Zhao X, Wang Q (2015a) Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm, Eisenia fetida. J Hazard Mater 284:233–240CrossRefGoogle Scholar
  58. Wang Y, Chen C, Qian Y, Zhao X, Wang Q, Kong X (2015b) Toxicity of mixtures of λ-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Ecotoxicol Environ Saf 111:242–247CrossRefGoogle Scholar
  59. Wu B, Liu ZT, Xu Y, Li DS, Li M (2012) Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicol Environ Saf 81:122–126CrossRefGoogle Scholar
  60. Xing HJ, Zhang ZW, Yao HD, Liu T, Wang LL, Xu SW, Li S (2014) Effects of atrazine and chlorpyrifos on cytochrome P450 in common carp liver. Chemosphere 104:244–250CrossRefGoogle Scholar
  61. Yen J, Donerly S, Levin ED, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol Teratol 33:735–741CrossRefGoogle Scholar
  62. Zhang JJ, Lu YC, Zhang JJ, Tan LR, Yang H (2014) Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol Environ Saf 102:105–112CrossRefGoogle Scholar
  63. Zhou SP, Duan CP, Wang XH, Michelle WHG, Yu ZF, Fu F (2008) Assessing cypermethrin-contaminated soil with three different earthworm test methods. J Environ Sci 20:1381–1385CrossRefGoogle Scholar
  64. Zhou SP, Duan CQ, Michelle WHG, Yang FZ, Wang XH (2011) Individual and combined toxic effects of cypermethrin and chlorpyrifos on earthworm. J Environ Sci 23:676–680CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yanhua Wang
    • 1
  • Xuehua An
    • 1
  • Weifeng Shen
    • 2
  • Liezhong Chen
    • 1
  • Jinhua Jiang
    • 1
  • Qiang Wang
    • 1
  • Leiming Cai
    • 1
  1. 1.State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-ProductsZhejiang Academy of Agricultural SciencesHangzhouPeople’s Republic of China
  2. 2.Sericultural Research InstituteZhejiang Academy of Agricultural SciencesHangzhouPeople’s Republic of China

Personalised recommendations