, Volume 25, Issue 4, pp 759–769 | Cite as

Gene expression profile changes in Eisenia fetida chronically exposed to PFOA

  • Srinithi Mayilswami
  • Kannan Krishnan
  • Mallavarapu Megharaj
  • Ravi Naidu


Eisenia fetida is a terrestrial organism, which can be used to diagnose sub-lethal concentrations of PFOA by using molecular biomarkers. In order to identify potential molecular biomarkers, we have exposed E. fetida to 10 mg/kg of PFOA in soil for 8 months. The mRNA isolation, sequencing, transcriptome assembly followed by differential gene expression studies have revealed that genes that are involved in apoptotic process, reproduction, calcium signalling, neuronal development and lipid metabolism are predominantly affected. Highly specific genes that are altered by PFOA can be further validated and used as biomarker to detect sub-lethal concentrations of PFOA in the soil.


Eisenia fetida Perfluorooctanoic acid (PFOA) Transcriptome assembly Differential gene expression Toxicogenomics 



The authors acknowledge the Ramaciotti Centre for Genomics, The University of New South Wales, Sydney for mRNA sequencing and eResearch SA for computing facility. Mrs. Srinithi Mayilswami is a recipient of IPRS and CRCCARE top-up scholarships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2016_1634_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 83 kb)


  1. Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C (2007) Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci 98:571–581CrossRefGoogle Scholar
  2. Abbott BD, Wood CR, Watkins AM, Tatum-Gibbs K, Das KP, Lau C (2012) Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod Toxicol 33:491–505CrossRefGoogle Scholar
  3. Arias EV, Mallavarapu M, Naidu R (2015a) Identification of the source of PFOS and PFOA contamination at a military air base site. Environ Monit Assess 187:4111CrossRefGoogle Scholar
  4. Arias EVA, Mallavarapu M, Naidu R (2015b) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environ Technol Innov 4:168–181CrossRefGoogle Scholar
  5. Bouché MB (1972) Lombriciens de France: écologie et systématiqueGoogle Scholar
  6. Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review. Environ Pollut 158:2793–2808CrossRefGoogle Scholar
  7. Cáceres T, Megharaj M, Naidu R (2011) Toxicity and transformation of insecticide fenamiphos to the earthworm Eisenia fetida. Ecotoxicology 20:20–28CrossRefGoogle Scholar
  8. Choi SK, Kim JH, Park JK, Lee KM, Kim E, Jeon WB (2013) Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem Toxicol 60:520–529CrossRefGoogle Scholar
  9. Edwards CA (2004) Earthworm ecology. CRC Press, Boca RatonCrossRefGoogle Scholar
  10. Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36:146a–152aCrossRefGoogle Scholar
  11. Gong P, Guan X, Inouye LS, Pirooznia M, Indest KJ, Athow RS, Deng Y, Perkins EJ (2007) Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environ Sci Technol 41:8195–8202CrossRefGoogle Scholar
  12. Gong P, Guan X, Inouye LS, Deng Y, Pirooznia M, Perkins EJ (2008) Transcriptomic analysis of RDX and TNT interactive sublethal effects in the earthworm Eisenia fetida. BMC Genom 9(Suppl 1):S15CrossRefGoogle Scholar
  13. Gong P, Guan X, Pirooznia M, Liang C, Perkins EJ (2012) Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida. Environ Sci Technol 46:1223–1232CrossRefGoogle Scholar
  14. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefGoogle Scholar
  15. Guruge KS, Yeung LW, Yamanaka N, Miyazaki S, Lam PK, Giesy JP, Jones PD, Yamashita N (2006) Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci 89:93–107CrossRefGoogle Scholar
  16. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefGoogle Scholar
  17. Hagenaars A, Vergauwen L, Benoot D, Laukens K, Knapen D (2013) Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere 91:844–856CrossRefGoogle Scholar
  18. Hansen KJ, Johnson HO, Eldridge JS, Butenhoff JL, Dick LA (2002) Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ Sci Technol 36:1681–1685CrossRefGoogle Scholar
  19. Harada K, Saito N, Inoue K, Yoshinaga T, Watanabe T, Sasaki S, Kamiyama S, Koizumi A (2004) The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years. J Occup Health 46:141–147CrossRefGoogle Scholar
  20. Hirano T, Tamae K (2011) Earthworms and soil pollutants. Sensors 11:11157–11167CrossRefGoogle Scholar
  21. Hoff PT, van de Vijver K, van Dongen W, Esmans EL, Blust R, de Coen WM (2003) Perfluorooctane sulfonic acid in bib (Trisopterus luscus) and plaice (Pleuronectes platessa) from the Western Scheldt and the Belgian North Sea: distribution and biochemical effects. Environ Toxicol Chem 22:608–614CrossRefGoogle Scholar
  22. Hu XZ, Hu DC (2009) Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol 83:851–861CrossRefGoogle Scholar
  23. Huang Q, Zhang J, Martin FL, Peng S, Tian M, Mu X, Shen H (2013) Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study. Toxicol Lett 223:211–220CrossRefGoogle Scholar
  24. Jeon J, Kannan K, Lim HK, Moon HB, Ra JS, Kim SD (2010) Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients. Environ Sci Technol 44:2695–2701CrossRefGoogle Scholar
  25. Jiang Q, Lust RM, Dewitt JC (2013) Perfluorooctanoic acid induced-developmental cardiotoxicity: are peroxisome proliferator activated receptor alpha (PPARalpha) and bone morphorgenic protein 2 (BMP2) pathways involved? J Toxicol Environ Health A 76:635–650CrossRefGoogle Scholar
  26. Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioral defects in adult mice. Neurotoxicology 29:160–169CrossRefGoogle Scholar
  27. Kleszczyński K, Składanowski AC (2011) Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis. Toxicol Appl Pharmacol 251:163–168CrossRefGoogle Scholar
  28. Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, Halldorsson TI, Becher G, Haug LS, Toft G (2013) Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod 28:3337–3348CrossRefGoogle Scholar
  29. Kubwabo C, Vais N, Benoit FM (2004) A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians. J Environ Monit 6:540–545CrossRefGoogle Scholar
  30. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefGoogle Scholar
  31. Liu X, Jin Y, Liu W, Wang F, Hao S (2011) Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons. Toxicol In Vitro 25:1294–1301CrossRefGoogle Scholar
  32. Mariussen E (2012) Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 86:1349–1367CrossRefGoogle Scholar
  33. Mayilswami S, Krishnan K, Megharaj M, Naidu R (2014) Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. Ecotoxicol Environ Saf 110c:288–297CrossRefGoogle Scholar
  34. McMurdo CJ, Ellis DA, Webster E, Butler J, Christensen RD, Reid LK (2008) Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA. Environ Sci Technol 42:3969–3974CrossRefGoogle Scholar
  35. Menzel R, Swain S, Hoess S, Claus E, Menzel S, Steinberg C, Reifferscheid G, Sturzenbaum S (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genom 10:160CrossRefGoogle Scholar
  36. Oakes KD, Sibley PK, Solomon KR, Mabury SA, van der Kraak GJ (2004) Impact of perfluorooctanoic acid on fathead minnow (Pimephales promelas) fatty acyl-CoA oxidase activity, circulating steroids, and reproduction in outdoor microcosms. Environ Toxicol Chem 23:1912–1919CrossRefGoogle Scholar
  37. Pirooznia M, Gong P, Guan X, Inouye LS, Yang K, Perkins EJ, Deng Y (2007) Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida. BMC Bioinform 8(Suppl 7):S7CrossRefGoogle Scholar
  38. Reinecke AJ, Reinecke SA (2004a) Earthworms as test organisms in ecotoxicological assessment of toxicant impacts on ecosystems. In: Edwards CA (ed) Earthworm Ecology. CRC Press, Boca Raton, pp. 299–327CrossRefGoogle Scholar
  39. Reinecke SA, Reinecke AJ (2004b) The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch Environ Contam Toxicol 46:208–215Google Scholar
  40. Ren H, Vallanat B, Nelson DM, Yeung LWY, Guruge KS, Lam PKS, Lehman-Mckeeman LD, Corton JC (2009) Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol 27:266–277CrossRefGoogle Scholar
  41. Ricketts HJ, Morgan AJ, Spurgeon DJ, Kille P (2004) Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology. Ecotoxicol Environ Saf 57:4–10CrossRefGoogle Scholar
  42. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefGoogle Scholar
  43. Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C (2007) Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology 239:15–33CrossRefGoogle Scholar
  44. Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, Waalkes MP, Abbott BD, Lau C, Corton JC (2008) Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103:46–56CrossRefGoogle Scholar
  45. Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C (2009) Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: COMPARISON to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol 27:278–288CrossRefGoogle Scholar
  46. Sanchez-Hernandez J (2006) Earthworm biomarkers in ecological risk assessment. Reviews of environmental contamination and toxicology. Springer, New YorkGoogle Scholar
  47. Shin HM, Vieira VM, Ryan PB, Steenland K, Bartell SM (2011) Retrospective exposure estimation and predicted versus observed serum perfluorooctanoic acid concentrations for participants in the C8 Health Project. Environ Health Perspect 119:1760–1765CrossRefGoogle Scholar
  48. Steenbergen NT, Iaccino F, de Winkel M, Reijnders L, Peijnenburg WJ (2005) Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ Sci Technol 39:5694–5702CrossRefGoogle Scholar
  49. Wei Y, Dai J, Liu M, Wang J, Xu M, Zha J, Wang Z (2007) Estrogen-like properties of perfluorooctanoic acid as revealed by expressing hepatic estrogen-responsive genes in rare minnows (Gobiocypris rarus). Environ Toxicol Chem 26:2440–2447CrossRefGoogle Scholar
  50. Wei Y, Liu Y, Wang J, Tao Y, Dai J (2008) Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus). Toxicol Appl Pharmacol 226:285–297CrossRefGoogle Scholar
  51. Ye L, Zhao B, Yuan K, Chu Y, Li C, Zhao C, Lian QQ, Ge RS (2012) Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol Lett 209:270–276CrossRefGoogle Scholar
  52. Zhao Y, Tan YS, Haslam SZ, Yang C (2010) Perfluorooctanoic acid effects on steroid hormone and growth factor levels mediate stimulation of peripubertal mammary gland development in C57Bl/6 mice. Toxicol Sci 115(1):214–224Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Srinithi Mayilswami
    • 1
    • 2
  • Kannan Krishnan
    • 2
    • 3
  • Mallavarapu Megharaj
    • 2
    • 3
  • Ravi Naidu
    • 2
    • 3
  1. 1.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaMawson Lakes, AdelaideAustralia
  2. 2.Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE)Mawson Lakes, AdelaideAustralia
  3. 3.Global Centre for Environmental Remediation, Faculty of Science and Information TechnologyThe University of NewcastleCallaghanAustralia

Personalised recommendations