, Volume 25, Issue 4, pp 623–632 | Cite as

No effect of Zn-pollution on the energy content in the black garden ant

  • Irena M. Grześ
  • Mateusz Okrutniak


Social insects may display a response to environmental pollution at the colony level. The key trait of an ant colony is to share energy between castes in order to maintain the existing adult population and to feed the brood. In the present study we calorimetrically measured the energy content per body mass (J/mg) of adults and pupae of workers, males and females of the black garden ant Lasius niger. The ants were sampled from 37 wild colonies originating from 19 sites located along the metal pollution gradient established in a post-mining area in Poland. The cost of metal detoxification seen as a possible reduction in energy content with increasing pollution was found neither for pupae nor adults. However, a considerable part of variance in energy content is explained by belonging to the same colony. These findings stress the importance of colony-specific factors and/or the interaction of these factors with specific site in shaping the response of ants to metal-pollution stress. Colony-related factors may constrain possible selfish decisions of workers over energy allocation in workers and sexual castes.


Ants Lasius niger Colony Castes Caloric value Pollution gradient Detoxification costs Queen-worker conflict 



This study was supported by The National Science Centre (Narodowe Centrum Nauki, NCN), based on decision DEC-2011/01/D/NZ8/00167. We thank two anonymous reviewers for helpful comments on the previous versions of the manuscript. We thank also dr Andrzej Kędziorski and Ewa Świerczek MSc for performing the calorimetric analyses and Anna Stefanowicz, Magdalena Witek, Marcin Woch, Sławomir Mitrus for critical reading of the earlier version of the manuscript. Katarzyna Wardzała, Patrycja Żywiec and Beata Ślusarczyk assisted in the fieldwork.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson KE, Linksvayer TA, Smith CP (2008) The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicicdae). Myrmecol News 11:119–132Google Scholar
  2. Baroni-Urbani C, Josens G, Peakin GJ (1978) Empirical data and demographic parameters. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, New York, pp 5–44Google Scholar
  3. Beaumelle L, Lamy I, Cheviron N, Hedde M (2014) Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils? Environ Pollut 191:182–189. doi: 10.1016/j.envpol.2014.04.021 CrossRefGoogle Scholar
  4. Bednarska AJ, Stachowicz I (2013) Costs of living in metal polluted areas: respiration rate of the ground beetle Pterostichus oblongopunctatus from two gradients of metal pollution. Ecotoxicology 22:118–124. doi: 10.1007/s10646-012-1008-y CrossRefGoogle Scholar
  5. Bernadou A, Fourcassie V (2008) Does substrate coarseness matter for foraging ants? An experiment with Lasius niger (Hymenoptera; Formicidae). J Insect Physiol 54:534–542. doi: 10.1016/j.jinsphys.2007.12.001 CrossRefGoogle Scholar
  6. Blüthgen N, Feldhaar H (2010) Food and Shelter: How Resources Influence Ant Ecology. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecology. Oxford University Press, Oxford, pp 115–136Google Scholar
  7. Boomsma JJ, Isaaks JA (1985) Energy investment and respiration in queens and males of Lasius niger (Hymenoptera, Formicidae). Behav Ecol Sociobiol 18:19–27Google Scholar
  8. Chapuisat M, Keller L (1999) Testing kin selection with sex allocation data in eusocial Hymenoptera. Heredity 82:473–478. doi: 10.1038/sj.hdy.6885340 CrossRefGoogle Scholar
  9. Coustau C, Chevillon C, French-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383. doi: 10.1016/s0169-5347(00)01929-7 CrossRefGoogle Scholar
  10. Czechowski W, Radchenko A, Czechowska W, Vepsäläinen W (2012) The ants of Poland. Natura optima dux Foundation, WarszawaGoogle Scholar
  11. De La Riva DG, Vindiola BG, Castaneda TN, Parker DR, Trumble JT (2014) Impact of selenium on mortality, bioaccumulation and feeding deterrence in the invasive Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Sci Total Environ 481:446–452. doi: 10.1016/j.scitotenv.2014.02.060 CrossRefGoogle Scholar
  12. Eeva T, Sorvari J, Kolvunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539. doi: 10.1016/j.envpol.2004.05.004 CrossRefGoogle Scholar
  13. Fjerdingstad EJ (2005) Control of body size of Lasius niger ant sexuals—worker interests, genes and environment. Mol Ecol 14:3123–3132. doi: 10.1111/j.1365-294X.2005.02648.x CrossRefGoogle Scholar
  14. Fjerdingstad EJ, Keller L (2004) Relationships between phenotype, mating behavior, and fitness of queens in the ant Lasius niger. Evolution 58:1056–1063CrossRefGoogle Scholar
  15. Gordon DM (1987) Group-level dynamics in harvester ants—young colonies and the role of patrolling. Anim Behav 35:833–843. doi: 10.1016/s0003-3472(87)80119-7 CrossRefGoogle Scholar
  16. Grześ IM (2009a) Ant species richness and evenness increase along a metal pollution gradient in the Boleslaw zinc smelter area. Pedobiologia 53:65–73. doi: 10.1016/j.pedobi.2009.03.002 CrossRefGoogle Scholar
  17. Grześ IM (2009b) Cadmium regulation by Lasius niger: a contribution to understanding high metal levels in ants. Insect Sci 16:89–92. doi: 10.1111/j.1744-7917.2009.00258.x CrossRefGoogle Scholar
  18. Grześ IM (2010a) Ants and heavy metal pollution—a review. Eur J Soil Biol 46:350–355. doi: 10.1016/j.ejsobi.2010.09.004 CrossRefGoogle Scholar
  19. Grześ IM (2010b) Zinc tolerance in the ant species Myrmica rubra originating from a metal pollution gradient. Eur J Soil Biol 46:87–90. doi: 10.1016/j.ejsobi.2009.11.005 CrossRefGoogle Scholar
  20. Grześ IM, Okrutniak M, Woch MW (2015) Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient. Environ Sci Pollut Res 22:6126–6134. doi: 10.1007/s11356-014-3808-5 CrossRefGoogle Scholar
  21. Hamilton WD (1964a) Genetical evolution of social behaviour 1. J Theor Biol. doi: 10.1016/0022-5193(64)90038-4 Google Scholar
  22. Hamilton WD (1964b) Genetical evolution of social behaviour 2. J Theor Biol. doi: 10.1016/0022-5193(64)90039-6 Google Scholar
  23. Holec M, Frouz J, Pokorny R (2006) The influence of different vegetation patches on the spatial distribution of nests and the epigeic activity of ants (Lasius niger) on a spoil dump after brown coal mining (Czech Republic). Eur J Soil Biol 42:158–165. doi: 10.1016/j.ejsobi.2005.12.005 CrossRefGoogle Scholar
  24. Hölldobler B, Wilson EO (1990) The Ants. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  25. Jemielity S, Keller L (2003) Queen control over reproductive decisions - no sexual deception in the ant Lasius niger. Mol Ecol 12:1589–1597. doi: 10.1046/j.1365-294X.2003.01838.x CrossRefGoogle Scholar
  26. Klekowski RZ, Bęczkowski J (1973) A new modification of micro-bomb calorimeter. Ekologia Polska 21(16):229–238Google Scholar
  27. Kools SAE, Boivin MEY, Van Der Wurff AWG, Berg MP, Van Gestel CAM, Van Straalen NM (2009) Assessment of structure and function in metal polluted grasslands using Terrestrial Model Ecosystems. Ecotoxicol Environ Saf 72:51–59. doi: 10.1016/j.ecoenv.2008.03.016 CrossRefGoogle Scholar
  28. Li X, Ding C, Wang X (2014) Effects of heavy metal pollution on soil microarthropods in upland red soil. Acta Ecologica Sinica 34:6198–6204. doi: 10.5846/stxb201301310202 Google Scholar
  29. Linksvayer TA, Janssen MA (2009) Traits underlying the capacity of ant colonies to adapt to disturbance and stress regimes. Syst Res Behav Sci 26:315–329. doi: 10.1002/sres.928 CrossRefGoogle Scholar
  30. Maavara V, Martin AJ, Oja A, Nuorteva P (1994) Sampling of different social categories of red wood ants (Formica s. str.) for biomonitoring. In: Market B (ed) Environmental sampling for trace analysis. VCH, Weinheim, pp 466–489Google Scholar
  31. Maryański M, Kramarz P, Laskowski R, Niklińska M (2002) Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food. Ecotoxicology 11:127–139. doi: 10.1023/a:1014425113481 CrossRefGoogle Scholar
  32. Meunier J, Chapuisat M (2009) The determinants of queen size in a socially polymorphic ant. J Evol Biol 22:1906–1913. doi: 10.1111/j.1420-9101.2009.01805.x CrossRefGoogle Scholar
  33. Meunier J, West SA, Chapuisat M (2008) Split sex ratios in the social Hymenoptera: a meta-analysis. Behav Ecol 19:382–390. doi: 10.1093/beheco/arm143 CrossRefGoogle Scholar
  34. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  35. Peakin GJ, Josens G (1978) Respiration and energy flow. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, New York, pp 111–163Google Scholar
  36. Rasse P, Deneubourg JL (2001) Dynamics of nest excavation and nest size regulation of Lasius niger (Hymenoptera : Formicidae). J Insect Behav 14:433–449. doi: 10.1023/a:1011163804217 CrossRefGoogle Scholar
  37. Ryan TP (2007) Modern experimental design. Wiley, ChichesterCrossRefGoogle Scholar
  38. Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol Evol 4:14–24. doi: 10.1111/j.2041-210x.2012.00251.x CrossRefGoogle Scholar
  39. Sibly RM, Calow P (1989) A life-cycle theory of responses to stress. Biol J Linn Soc 37:101–116CrossRefGoogle Scholar
  40. Skalski T, Stone D, Kramarz P, Laskowski R (2010) Ground beetle community responses to heavy metal contamination. Baltic J Coleopterol 10:1–12Google Scholar
  41. Sorvari J, Eeva T (2010) Pollution diminishes intra-specific aggressiveness between wood ant colonies. Sci Total Environ 408:3189–3192. doi: 10.1016/j.scitotenv.2010.04.008 CrossRefGoogle Scholar
  42. Stefanowicz AM, Niklińska M, Laskowski R (2008) Metals affect soil bacterial and fungal functional diversity differently. Environ Toxicol Chem 27:591–598. doi: 10.1897/07-288 CrossRefGoogle Scholar
  43. Stefanowicz AM, Woch MW, Kapusta P (2014) Inconspicuous waste heaps left by historical Zn-Pb mining are hot spots of soil contamination. Geoderma 235:1–8. doi: 10.1016/j.geoderma.2014.06.020 CrossRefGoogle Scholar
  44. Trivers RL, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191:249–263. doi: 10.1126/science.1108197 CrossRefGoogle Scholar
  45. Zygmunt PMS, Maryański M, Laskowski R (2006) Body mass and caloric value of the ground beetle (Pterostichus oblongopunctatus) (Coleoptera, Carabidae) along a gradient of heavy metal pollution. Environ Toxicol Chem 25:2709–2714. doi: 10.1897/05-580r.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Environmental Zoology, Institute of Animal ScienceUniversity of Agriculture in KrakowKrakówPoland

Personalised recommendations