Skip to main content
Log in

Dose–response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox® and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose–response curves, and 55 % of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50 % (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose–response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AI:

Autoinducer

ARB:

Antibiotic-resistant bacteria

ASA:

Acetylsalicylic acid

DF:

Degree of freedom

DLERA:

Detailed level ecological risk assessment

ECF :

Effective concentration of PPCP that gives a bioluminescence inhibition of F percent

ECOSAR:

Ecological structure activity relationship

EC50 :

Half maximal effective concentration

EPA:

Environmental protection agency

K-S:

Kolmogorov–Smirnov distance

LC50 :

Half maximal lethal concentration

LOEC:

Lowest observable effect concentration

LogKoc :

Logarithm of soil/water partition coefficient

LogKow :

Logarithm of octanol/water partition coefficient

m:

Slope of the curve

MS:

Mean of square

MSE:

Maximum stimulatory effect

MSEC:

Maximum stimulatory effect concentration

n:

Number of data

na:

Not available

NO(A)EL:

No observed (adverse) effect level

NOEC:

No observed effect concentration

NSAIDs:

Non-steroidal anti-inflammatory drugs

NTR:

Normality test of residuals passed

PCP:

Personal care product

PhAC:

Pharmaceutical active compound

PKa :

The negative logarithm of the acid dissociation constant, PCBs, Polychlorinated biphenyls

PPCPs:

Pharmaceutical and personal care products

QSARs:

Quantitative structure–activity relationships

R:

Correlation coefficient

S:

Solubility

SD:

Standard deviation

SS:

Sum of square

WET:

Whole effluent toxicity test

WWTP:

Wastewater Treatment Plant

X:

Logarithm of the concentration of the PPCPs which induce the Y effect

Y:

Effect on Vibrio fischeri

YB :

Plateau at the left end of the curve

YT :

Plateau at the right end of the curve

ZEP:

Zero effect-concentration point

References

  • Azur Environmental (1999) MicrotoxOmni™ software for Windows® 95/98/NT. User Manual, pp 1–31

  • Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38(14):3291–3301

    Article  CAS  Google Scholar 

  • Backhaus T, Porsbring T, Arrhenius Å, Brosche S, Johansson P, Blanck H (2011) Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine Periphyton communities. Environ Toxicol Chem 30(9):2030–2040. doi:10.1002/etc.586

    Article  CAS  Google Scholar 

  • Batt A, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 80(13):5021–5030. doi:10.1021/ac800066n

    Article  CAS  Google Scholar 

  • Beckon W, Parkins C, Maximovich A, Beckon AV (2008) A general approach to modeling biphasic relationships. Environ Sci Technol 42:1308–1314. doi:10.1021/es071148m

    Article  CAS  Google Scholar 

  • Belz RG, Cedergreen N, Sørensen H (2008) Hormesis in mixtures—can it be predicted? Sci Tot Environ 404:77–87. doi:10.1016/j.scitotenv.2008.06.008

    Article  CAS  Google Scholar 

  • Bouki C, Venieri D, Diamadopoulos E (2013) Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol Environ Saf 91:1–9

    Article  CAS  Google Scholar 

  • Breitholtz M, Nyholm JR, Karlsson J, Andersson PL (2008) Are individual NOEC levels safe for mixtures? A study on mixture toxicity of brominated flame–retardants in the copepod Nitocra spinipes. Chemosphere 72:1242–1249. doi:10.1016/j.chemosphere.2008.05.004

    Article  CAS  Google Scholar 

  • Calabrese EJ (1999) Evidence that hormesis represents an ‘‘overcompensation’’ response to a disruption in homeostasis. Ecotoxicol Environ Saf 42:135–137

    Article  Google Scholar 

  • Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411. doi:10.1016/j.envpol.2004.10.001

    Article  CAS  Google Scholar 

  • Calabrese EJ (2008a) Hormesis and mixtures. Toxicol Appl Pharmacol 229:262–263. doi:10.1016/j.taap.2008.01.024

    Article  CAS  Google Scholar 

  • Calabrese EJ (2008b) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451–1474

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:2–31

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001) Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 22(6):285–291

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) HORMESIS: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197. doi:10.1146/annurev.pharmtox.43.100901.140223

    Article  CAS  Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharm 202:289–301. doi:10.1016/j.taap.2004.06.023

    Article  CAS  Google Scholar 

  • Cedergreen N, Ritz C, Streibig JC (2005) Improved empirical models describing hormesis. Environ Toxicol Chem 24(12):3166–3172

    Article  CAS  Google Scholar 

  • Chapman PM (2002) Ecological risk assessment (ERA) and hormesis. Sci Tot Environ 288:131–140

    Article  CAS  Google Scholar 

  • Choi K, Meier PG (2001) Toxicity evaluation of metal plating wastewater employing the Microtox® Assay: a comparison with cladocerans and fish. Environ Toxicol 16(2):136–141. doi:10.1002/tox.1017

    Article  CAS  Google Scholar 

  • Christofi N, Hoffmann C, Tosh L (2002) Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol Environ Saf 52:227–223. doi:10.1006/eesa.2002.2203. http://wwalibrary.com

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Let 142:185–194. doi:10.1016/S0378-4274(03)00068-7

    Article  CAS  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315. doi:10.1016/S0147-6513(03)00141-6

    Article  CAS  Google Scholar 

  • Conolly RB, Lutz WK (2004) Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 77:151–157. doi:10.1093/toxsci/kfh007

    Article  CAS  Google Scholar 

  • Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732

    Article  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107(6):907–938

    Article  CAS  Google Scholar 

  • Deng Z, Lin Z, Zou X, Yao Z, Tian D, Wang D, Yin D (2012) Model of hormesis and its toxicity mechanism based on quorum sensing: a case study on the toxicity of sulfonamides to Photobacterium phosphoreum. Environ Sci Technol 46:7746–7754. doi:10.1021/es203490f

    Article  CAS  Google Scholar 

  • Dévier MH, Mazellier P, Aït-Aïssa S, Budzinski H (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. C R Chim 14:766–779. doi:10.1016/j.crci.2011.04.006

    Article  Google Scholar 

  • EPA (2009) Estimation programs interface suite TM for Microsoft® Windows, v 4.00. United States Environmental Protection Agency, Washington

  • Escher BI, Bramaz N, Eggen RIL, Richter M (2005) In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39(9):3090–3100. doi:10.1021/es048590e

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Review ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

    Article  CAS  Google Scholar 

  • Fernández-Piñas F, Rodea-Palomares I, Leganés F, González-Pleiter M, Muñoz-Martín MA (2014) Evaluation of the ecotoxicity of pollutants with bioluminescent microorganism. In: Touand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology—volume 2, advances in biochemical engineering/biotechnology 145, Springer, Berlin Heidelberg. doi:10.1007/978-3-662-43619-6_3

  • Ge H-L, Liu S-S, Zhu X-W, Liu H-L, Wang L-J (2011) Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environ Sci Technol 45:1623–1629. doi:10.1021/es1018948

    Article  CAS  Google Scholar 

  • González-Mariño I, Quintana JB, Rodríguez I, Schrader S, Moeder M (2011) Fully automated determination of parabens, triclosan and methyl triclosan in wastewater by microextraction by packed sorbents and gas chromatography–mass spectrometry. Anal Chim Acta 684:59–66. doi:10.1016/j.aca.2010.10.049

    Article  Google Scholar 

  • Hereber T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17. doi:10.1016/S0378-4274(02)00041-3

    Article  Google Scholar 

  • ISO (2007) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—Part 3: method using freeze-dried bacteria. ISO 11348–3:2007

    Google Scholar 

  • Kefford BJ, Zalizniak L, Warne M, Nugegoda D (2008) Is the integration of hormesis and essentiality into ecotoxicology now opening Pandora’s Box? Environ Pollut 151:516–523. doi:10.1016/j.envpol.2007.04.019

    Article  CAS  Google Scholar 

  • Kortenkamp A, Backhaus T, Faust M (2009) State of the art report on mixture toxicity. Report for Directorate General for the Environment of the European Commission. European Commission, Luxembourg

  • Kot-Wasik A, Dȩbska J, Wasik A, Namieśnik J (2006) Determination of non-steroidal anti-inflammatory drugs in natural waters using off-line and on-line SPE followed by LC Coupled with DAD-MS. Chromatographia 64(1–2):13–21. doi:10.1365/s10337-006-0797-7

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Dȩbska J, Wasik A, Namieśnik J (2007) Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. Trends Anal Chem 26(6):557–568. doi:10.1016/j.trac.2006.11.004

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90:2354–2366. doi:10.1016/j.jenvman.2009.01.023

    Article  Google Scholar 

  • Liu S-S, Song X-Q, Liu H-L, Zhang Y-H, Zhang J (2009) Combined photobacterium toxicity of herbicide mixtures containing one insecticide. Chemosphere 75:381–388. doi:10.1016/j.chemosphere.2008.12.026

    Article  CAS  Google Scholar 

  • Ma XY, Wang XC, Ngo HH, Guo W (2012) Application of Vibrio qinghaiensis sp. Q67 for ecotoxic assessment of environmental waters—a mini review. J Water Sustain 2(4):209–220. doi:10.11912/jws.2.4.209-220

    CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7. doi:10.1016/j.arr.2007.08.007

    Article  CAS  Google Scholar 

  • Milton DL (2006) Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71. doi:10.1016/j.ijmm.2006.01.044

    Article  CAS  Google Scholar 

  • Ortiz de García S, Pinto GP, García-Encina PA, Irusta RI (2013) Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. J Environ Manag 129:384–397. doi:10.1016/j.jenvman.2013.06.035

    Article  Google Scholar 

  • Ortiz de García S, Pinto Pinto G, García-Encina P, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23(8):1517–1533. doi:10.1007/s10646-014-1293-8

    Article  Google Scholar 

  • OSPAR Commission (2007) Practical guidance document on whole effluent assessment. hazardous substances series. Publication Number: 316/2007. ISBN 978-1-905859-55-9. http://www.ospar.org/documents/dbase/publications/p00316/p00316_wea%20guidance%20document.pdf. Accessed 11 Mar 2014

  • Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268. doi:10.1016/j.envint.2005.08.022

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2008) Toxicity assessment of organic contaminants: evaluation of mixture effects in model industrial mixtures using 2n full factorial design. Chemosphere 73:1049–1055. doi:10.1016/j.chemosphere.2008.07.078

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2009) Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals. Chemosphere 75:1429–1439. doi:10.1016/j.chemosphere.2009.03.005

    Article  CAS  Google Scholar 

  • Qin L-T, Liu S-S, Liu H-L, Zhang Y-H (2010) Support vector regression and least squares support vector regression for hormetic dose-response curves fitting. Chemosphere 78:327–334. doi:10.1016/j.chemosphere.2009.10.029

    Article  CAS  Google Scholar 

  • Ruby EG, Lee K-H (1998) The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64(3):805–812

    CAS  Google Scholar 

  • Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mat 175:45–95. doi:10.1016/j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  • Shen K, Shen C, Lu Y, Tang X, Zhang C, Chen X, Shi J, Lin Q, Chen Y (2009) Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biol Res 42:183–187

    Article  CAS  Google Scholar 

  • Silva E, Rajapakse N, Kortenkamp A (2002) Something from “Nothing” – Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8):1751–1756. doi:10.1021/es0101227

    Article  CAS  Google Scholar 

  • SRC PhysProp Database (2014) http://www.srcinc.com/what-we-do/environmental/scientific-databases.html. Accessed 27 Mar 2014

  • Stebbing ARD (1998) A theory for growth hormesis. Mutation Research 403:249–258. PII: S0027- 5107(98)00014-1

  • Stebbing ARD (2000) Hormesis: interpreting the β-curve using control theory. J Appl Toxicol 20:93–101

    Article  CAS  Google Scholar 

  • Teeguarden JG, Dragan Y, Pitot HC (2000) Hazard assessment of chemical carcinogens: the impact of hormesis. J Appl Toxicol 20:113–120. doi:10.1002/(SICI)1099-1263(200003/04)20:2<113

    Article  CAS  Google Scholar 

  • Ternes T, Bonerz M, Schmidt T (2001) Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 938:175–185

    Article  CAS  Google Scholar 

  • United Nations (2011) Globally harmonized system of classification and labelling of chemicals (GHS), 4th edn. United Nations Publications, New York

    Google Scholar 

  • van der Grinten E, Pikkemaat MG, van den Brandhof EJ, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6. doi:10.1016/j.chemosphere.2010.04.011

    Article  Google Scholar 

  • Vighi M, Migliorati S, Monti GS (2009) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). I: QSAR equation for narcotics and polar narcotics. Ecotoxicol Environ Saf 72:154–161. doi:10.1016/j.ecoenv.2008.05.008

    Article  CAS  Google Scholar 

  • Villa S, Migliorati S, Monti GS, Vighi M (2012) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). II: response to complex mixtures of heterogeneous chemicals at low levels of individual components. Ecotoxicol Environ Saf 86:93–100. doi:10.1016/j.ecoenv.2012.08.030

    Article  CAS  Google Scholar 

  • Warne MSJ, van Dam R (2008) NOEC and LOEC should no longer be generated or used. Australas J Ecotoxicol 14:1–5

    Google Scholar 

  • Zhang J, Liu S-S, Dou R-N, Liu H-L, Zhang J (2011) Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp.-Q67. Wat Res 47:833–840. doi:10.1016/j.chemosphere.2010.10.063

    CAS  Google Scholar 

  • Zhang J, Liu S-S, Yu Z-Y, Zhang J (2013a) Time-dependent hormetic effects of 1-alkyl-3-methylimidazolium bromide on Vibrio qinghaiensis sp.-Q67: luminescence, redox reactants and antioxidases. Chemosphere 91:462–467

    Article  CAS  Google Scholar 

  • Zhang J, Liu S-S, Yu Z-Y, Liu H-L, Zhang J (2013b) The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67. J Hazard Mat 258–259:70–76. doi:10.1016/j.jhazmat.2013.02.057

    Article  Google Scholar 

  • Zou X, Lin Z, Deng Z, Yin D (2013) Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere 90:2070–2076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Environmental Technology Group of the University of Valladolid for supporting this research and Carabobo University, Venezuela for the Ph.D. scholarship Grants (Nos. CD-3417 and CD-2155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheyla Ortiz de García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary material 2 (DOCX 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de García, S.O., García-Encina, P.A. & Irusta-Mata, R. Dose–response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. Ecotoxicology 25, 141–162 (2016). https://doi.org/10.1007/s10646-015-1576-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1576-8

Keywords

Navigation