, Volume 25, Issue 1, pp 141–162 | Cite as

Dose–response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products

  • Sheyla Ortiz de García
  • Pedro A. García-Encina
  • Rubén Irusta-Mata


The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox® and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose–response curves, and 55 % of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50 % (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose–response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments.


Bioluminescence Ecotoxicity Hormesis Pharmaceuticals and Personal Care Products 





Antibiotic-resistant bacteria


Acetylsalicylic acid


Degree of freedom


Detailed level ecological risk assessment


Effective concentration of PPCP that gives a bioluminescence inhibition of F percent


Ecological structure activity relationship


Half maximal effective concentration


Environmental protection agency


Kolmogorov–Smirnov distance


Half maximal lethal concentration


Lowest observable effect concentration


Logarithm of soil/water partition coefficient


Logarithm of octanol/water partition coefficient


Slope of the curve


Mean of square


Maximum stimulatory effect


Maximum stimulatory effect concentration


Number of data


Not available


No observed (adverse) effect level


No observed effect concentration


Non-steroidal anti-inflammatory drugs


Normality test of residuals passed


Personal care product


Pharmaceutical active compound


The negative logarithm of the acid dissociation constant, PCBs, Polychlorinated biphenyls


Pharmaceutical and personal care products


Quantitative structure–activity relationships


Correlation coefficient




Standard deviation


Sum of square


Whole effluent toxicity test


Wastewater Treatment Plant


Logarithm of the concentration of the PPCPs which induce the Y effect


Effect on Vibrio fischeri


Plateau at the left end of the curve


Plateau at the right end of the curve


Zero effect-concentration point



The authors would like to thank the Environmental Technology Group of the University of Valladolid for supporting this research and Carabobo University, Venezuela for the Ph.D. scholarship Grants (Nos. CD-3417 and CD-2155).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10646_2015_1576_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)
10646_2015_1576_MOESM2_ESM.docx (1.2 mb)
Supplementary material 2 (DOCX 1237 kb)


  1. Azur Environmental (1999) MicrotoxOmni™ software for Windows® 95/98/NT. User Manual, pp 1–31Google Scholar
  2. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38(14):3291–3301CrossRefGoogle Scholar
  3. Backhaus T, Porsbring T, Arrhenius Å, Brosche S, Johansson P, Blanck H (2011) Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine Periphyton communities. Environ Toxicol Chem 30(9):2030–2040. doi: 10.1002/etc.586 CrossRefGoogle Scholar
  4. Batt A, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 80(13):5021–5030. doi: 10.1021/ac800066n CrossRefGoogle Scholar
  5. Beckon W, Parkins C, Maximovich A, Beckon AV (2008) A general approach to modeling biphasic relationships. Environ Sci Technol 42:1308–1314. doi: 10.1021/es071148m CrossRefGoogle Scholar
  6. Belz RG, Cedergreen N, Sørensen H (2008) Hormesis in mixtures—can it be predicted? Sci Tot Environ 404:77–87. doi: 10.1016/j.scitotenv.2008.06.008 CrossRefGoogle Scholar
  7. Bouki C, Venieri D, Diamadopoulos E (2013) Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol Environ Saf 91:1–9CrossRefGoogle Scholar
  8. Breitholtz M, Nyholm JR, Karlsson J, Andersson PL (2008) Are individual NOEC levels safe for mixtures? A study on mixture toxicity of brominated flame–retardants in the copepod Nitocra spinipes. Chemosphere 72:1242–1249. doi: 10.1016/j.chemosphere.2008.05.004 CrossRefGoogle Scholar
  9. Calabrese EJ (1999) Evidence that hormesis represents an ‘‘overcompensation’’ response to a disruption in homeostasis. Ecotoxicol Environ Saf 42:135–137CrossRefGoogle Scholar
  10. Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:378–411. doi: 10.1016/j.envpol.2004.10.001 CrossRefGoogle Scholar
  11. Calabrese EJ (2008a) Hormesis and mixtures. Toxicol Appl Pharmacol 229:262–263. doi: 10.1016/j.taap.2008.01.024 CrossRefGoogle Scholar
  12. Calabrese EJ (2008b) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451–1474CrossRefGoogle Scholar
  13. Calabrese EJ, Baldwin LA (2000) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:2–31CrossRefGoogle Scholar
  14. Calabrese EJ, Baldwin LA (2001) Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 22(6):285–291CrossRefGoogle Scholar
  15. Calabrese EJ, Baldwin LA (2003) HORMESIS: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197. doi: 10.1146/annurev.pharmtox.43.100901.140223 CrossRefGoogle Scholar
  16. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharm 202:289–301. doi: 10.1016/j.taap.2004.06.023 CrossRefGoogle Scholar
  17. Cedergreen N, Ritz C, Streibig JC (2005) Improved empirical models describing hormesis. Environ Toxicol Chem 24(12):3166–3172CrossRefGoogle Scholar
  18. Chapman PM (2002) Ecological risk assessment (ERA) and hormesis. Sci Tot Environ 288:131–140CrossRefGoogle Scholar
  19. Choi K, Meier PG (2001) Toxicity evaluation of metal plating wastewater employing the Microtox® Assay: a comparison with cladocerans and fish. Environ Toxicol 16(2):136–141. doi: 10.1002/tox.1017 CrossRefGoogle Scholar
  20. Christofi N, Hoffmann C, Tosh L (2002) Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol Environ Saf 52:227–223. doi: 10.1006/eesa.2002.2203.
  21. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Let 142:185–194. doi: 10.1016/S0378-4274(03)00068-7 CrossRefGoogle Scholar
  22. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315. doi: 10.1016/S0147-6513(03)00141-6 CrossRefGoogle Scholar
  23. Conolly RB, Lutz WK (2004) Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 77:151–157. doi: 10.1093/toxsci/kfh007 CrossRefGoogle Scholar
  24. Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732CrossRefGoogle Scholar
  25. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107(6):907–938CrossRefGoogle Scholar
  26. Deng Z, Lin Z, Zou X, Yao Z, Tian D, Wang D, Yin D (2012) Model of hormesis and its toxicity mechanism based on quorum sensing: a case study on the toxicity of sulfonamides to Photobacterium phosphoreum. Environ Sci Technol 46:7746–7754. doi: 10.1021/es203490f CrossRefGoogle Scholar
  27. Dévier MH, Mazellier P, Aït-Aïssa S, Budzinski H (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. C R Chim 14:766–779. doi: 10.1016/j.crci.2011.04.006 CrossRefGoogle Scholar
  28. EPA (2009) Estimation programs interface suite TM for Microsoft® Windows, v 4.00. United States Environmental Protection Agency, WashingtonGoogle Scholar
  29. Escher BI, Bramaz N, Eggen RIL, Richter M (2005) In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39(9):3090–3100. doi: 10.1021/es048590e CrossRefGoogle Scholar
  30. Fent K, Weston AA, Caminada D (2006) Review ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi: 10.1016/j.aquatox.2005.09.009 CrossRefGoogle Scholar
  31. Fernández-Piñas F, Rodea-Palomares I, Leganés F, González-Pleiter M, Muñoz-Martín MA (2014) Evaluation of the ecotoxicity of pollutants with bioluminescent microorganism. In: Touand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology—volume 2, advances in biochemical engineering/biotechnology 145, Springer, Berlin Heidelberg. doi: 10.1007/978-3-662-43619-6_3
  32. Ge H-L, Liu S-S, Zhu X-W, Liu H-L, Wang L-J (2011) Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environ Sci Technol 45:1623–1629. doi: 10.1021/es1018948 CrossRefGoogle Scholar
  33. González-Mariño I, Quintana JB, Rodríguez I, Schrader S, Moeder M (2011) Fully automated determination of parabens, triclosan and methyl triclosan in wastewater by microextraction by packed sorbents and gas chromatography–mass spectrometry. Anal Chim Acta 684:59–66. doi: 10.1016/j.aca.2010.10.049 CrossRefGoogle Scholar
  34. Hereber T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17. doi: 10.1016/S0378-4274(02)00041-3 CrossRefGoogle Scholar
  35. ISO (2007) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—Part 3: method using freeze-dried bacteria. ISO 11348–3:2007Google Scholar
  36. Kefford BJ, Zalizniak L, Warne M, Nugegoda D (2008) Is the integration of hormesis and essentiality into ecotoxicology now opening Pandora’s Box? Environ Pollut 151:516–523. doi: 10.1016/j.envpol.2007.04.019 CrossRefGoogle Scholar
  37. Kortenkamp A, Backhaus T, Faust M (2009) State of the art report on mixture toxicity. Report for Directorate General for the Environment of the European Commission. European Commission, LuxembourgGoogle Scholar
  38. Kot-Wasik A, Dȩbska J, Wasik A, Namieśnik J (2006) Determination of non-steroidal anti-inflammatory drugs in natural waters using off-line and on-line SPE followed by LC Coupled with DAD-MS. Chromatographia 64(1–2):13–21. doi: 10.1365/s10337-006-0797-7 CrossRefGoogle Scholar
  39. Kot-Wasik A, Dȩbska J, Wasik A, Namieśnik J (2007) Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. Trends Anal Chem 26(6):557–568. doi: 10.1016/j.trac.2006.11.004 CrossRefGoogle Scholar
  40. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90:2354–2366. doi: 10.1016/j.jenvman.2009.01.023 CrossRefGoogle Scholar
  41. Liu S-S, Song X-Q, Liu H-L, Zhang Y-H, Zhang J (2009) Combined photobacterium toxicity of herbicide mixtures containing one insecticide. Chemosphere 75:381–388. doi: 10.1016/j.chemosphere.2008.12.026 CrossRefGoogle Scholar
  42. Ma XY, Wang XC, Ngo HH, Guo W (2012) Application of Vibrio qinghaiensis sp. Q67 for ecotoxic assessment of environmental waters—a mini review. J Water Sustain 2(4):209–220. doi: 10.11912/jws.2.4.209-220 Google Scholar
  43. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7. doi: 10.1016/j.arr.2007.08.007 CrossRefGoogle Scholar
  44. Milton DL (2006) Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71. doi: 10.1016/j.ijmm.2006.01.044 CrossRefGoogle Scholar
  45. Ortiz de García S, Pinto GP, García-Encina PA, Irusta RI (2013) Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. J Environ Manag 129:384–397. doi: 10.1016/j.jenvman.2013.06.035 CrossRefGoogle Scholar
  46. Ortiz de García S, Pinto Pinto G, García-Encina P, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23(8):1517–1533. doi: 10.1007/s10646-014-1293-8 CrossRefGoogle Scholar
  47. OSPAR Commission (2007) Practical guidance document on whole effluent assessment. hazardous substances series. Publication Number: 316/2007. ISBN 978-1-905859-55-9. Accessed 11 Mar 2014
  48. Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268. doi: 10.1016/j.envint.2005.08.022 CrossRefGoogle Scholar
  49. Parvez S, Venkataraman C, Mukherji S (2008) Toxicity assessment of organic contaminants: evaluation of mixture effects in model industrial mixtures using 2n full factorial design. Chemosphere 73:1049–1055. doi: 10.1016/j.chemosphere.2008.07.078 CrossRefGoogle Scholar
  50. Parvez S, Venkataraman C, Mukherji S (2009) Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals. Chemosphere 75:1429–1439. doi: 10.1016/j.chemosphere.2009.03.005 CrossRefGoogle Scholar
  51. Qin L-T, Liu S-S, Liu H-L, Zhang Y-H (2010) Support vector regression and least squares support vector regression for hormetic dose-response curves fitting. Chemosphere 78:327–334. doi: 10.1016/j.chemosphere.2009.10.029 CrossRefGoogle Scholar
  52. Ruby EG, Lee K-H (1998) The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64(3):805–812Google Scholar
  53. Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mat 175:45–95. doi: 10.1016/j.jhazmat.2009.10.100 CrossRefGoogle Scholar
  54. Shen K, Shen C, Lu Y, Tang X, Zhang C, Chen X, Shi J, Lin Q, Chen Y (2009) Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biol Res 42:183–187CrossRefGoogle Scholar
  55. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “Nothing” – Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8):1751–1756. doi: 10.1021/es0101227 CrossRefGoogle Scholar
  56. SRC PhysProp Database (2014) Accessed 27 Mar 2014
  57. Stebbing ARD (1998) A theory for growth hormesis. Mutation Research 403:249–258. PII: S0027- 5107(98)00014-1Google Scholar
  58. Stebbing ARD (2000) Hormesis: interpreting the β-curve using control theory. J Appl Toxicol 20:93–101CrossRefGoogle Scholar
  59. Teeguarden JG, Dragan Y, Pitot HC (2000) Hazard assessment of chemical carcinogens: the impact of hormesis. J Appl Toxicol 20:113–120. doi: 10.1002/(SICI)1099-1263(200003/04)20:2<113 CrossRefGoogle Scholar
  60. Ternes T, Bonerz M, Schmidt T (2001) Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 938:175–185CrossRefGoogle Scholar
  61. United Nations (2011) Globally harmonized system of classification and labelling of chemicals (GHS), 4th edn. United Nations Publications, New YorkGoogle Scholar
  62. van der Grinten E, Pikkemaat MG, van den Brandhof EJ, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6. doi: 10.1016/j.chemosphere.2010.04.011 CrossRefGoogle Scholar
  63. Vighi M, Migliorati S, Monti GS (2009) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). I: QSAR equation for narcotics and polar narcotics. Ecotoxicol Environ Saf 72:154–161. doi: 10.1016/j.ecoenv.2008.05.008 CrossRefGoogle Scholar
  64. Villa S, Migliorati S, Monti GS, Vighi M (2012) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). II: response to complex mixtures of heterogeneous chemicals at low levels of individual components. Ecotoxicol Environ Saf 86:93–100. doi: 10.1016/j.ecoenv.2012.08.030 CrossRefGoogle Scholar
  65. Warne MSJ, van Dam R (2008) NOEC and LOEC should no longer be generated or used. Australas J Ecotoxicol 14:1–5Google Scholar
  66. Zhang J, Liu S-S, Dou R-N, Liu H-L, Zhang J (2011) Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp.-Q67. Wat Res 47:833–840. doi: 10.1016/j.chemosphere.2010.10.063 Google Scholar
  67. Zhang J, Liu S-S, Yu Z-Y, Zhang J (2013a) Time-dependent hormetic effects of 1-alkyl-3-methylimidazolium bromide on Vibrio qinghaiensis sp.-Q67: luminescence, redox reactants and antioxidases. Chemosphere 91:462–467CrossRefGoogle Scholar
  68. Zhang J, Liu S-S, Yu Z-Y, Liu H-L, Zhang J (2013b) The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67. J Hazard Mat 258–259:70–76. doi: 10.1016/j.jhazmat.2013.02.057 CrossRefGoogle Scholar
  69. Zou X, Lin Z, Deng Z, Yin D (2013) Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere 90:2070–2076CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sheyla Ortiz de García
    • 1
    • 3
  • Pedro A. García-Encina
    • 1
  • Rubén Irusta-Mata
    • 2
  1. 1.Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain
  2. 2.Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain
  3. 3.Department of Chemistry, Faculty of Sciences and TechnologyUniversity of CaraboboValenciaBolivarian Republic of Venezuela

Personalised recommendations