Skip to main content
Log in

Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Sublethal doses of some insecticides have been reported to either stimulate or reduce the survival and fecundity of insects. Many sublethal-effect studies have been conducted after exposure of only one generation to sublethal insecticides, and there is little information about the sublethal effects on insects after long-term exposure to sublethal insecticides. In this study, changes in biological characteristics were investigated in spinosad-susceptible (Spin-S) and sublethal-spinosad-treated (Spin-Sub) strains of Frankliniella occidentalis (Pergande) after exposure to their corresponding sublethal concentrations of spinosad. The results showed that for the Spin-S strain, the LC10 concentration of spinosad slightly affected the biotic fitness both in parents and offspring of F. occidentalis. The LC25 concentration of spinosad prolonged the development time, reduced the fecundity, and significantly reduced the intrinsic rate of increase, the net reproductive rate and the finite rate of increase in the Spin-S strain. However, the negative effects were not as pronounced in the offspring (F1 generation) as in the parent generation. For the Spin-Sub strain, the LC10 and LC25 concentrations of spinosad had little negative effect on the development and fecundity, and no significant difference was found between the effects of the LC10 and LC25 treatments on the Spin-Sub strain. The Spin-Sub strain exhibited a shorter developmental time, and larger intrinsic rates of increase and net reproductive rates, compared with the corresponding treatments of the Spin-S strain. These findings combined with our previous studies suggest that the biotic fitness increased in the Spin-Sub strain and the strain became more adaptable to sublethal doses of spinosad, compared with the Spin-S strain. Physiological and biochemical adaptation may contribute to these changes after long treatment times at sublethal doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LC10 :

Lethal concentration to 10 % of the population

LC25 :

Lethal concentration to 25 % of the population

CarE:

Carboxylesterase

rm :

Intrinsic rate of increase

R0 :

Net reproductive rate

λ :

Finite rate of increase

T:

Generation time

APOP:

Pre-oviposition period of adult stage of female

TPOP:

Total pre-oviposition period of female counted from birth

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Ayyanath MM, Cutler GC, Scott-Dupree CD, Sibley PK (2013) Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8(9):e74532

    Article  CAS  Google Scholar 

  • Bao HB, Liu SH, Gu JH, Wang XZ, Liang XL, Liu ZW (2009) Sublethal effects of four insecticides on there production and wing formation of brown planthopper. Nilaparvata lugens. Pest Manag Sci. 65:170–174

    Article  CAS  Google Scholar 

  • Bianchini A, Lauer MM, Nery LE, Colares EP, Monserrat JM, Dos Santos Filho EA (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol A: Mol Integr Physiol 151:423–436

    Article  Google Scholar 

  • Bielza P, Quinto V, Contreras J, Torn´e M, Mart´ın A, Espinosa PJ (2007) Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of southeastern Spain. Pest Manag Sci 63:682–687

    Article  CAS  Google Scholar 

  • Bielza P, Quinto V, Grávalos C, Abellán J, Fernández E (2008) Lack of fitness costs of insecticide resistance in the western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 101:499–503

    Article  CAS  Google Scholar 

  • Brown AJP, Budge S, Kaloriti D (2014) Stress adaptation in a pathogenic fungus. J Exp Biol 217:144–155

    Article  CAS  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ et al (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hermetic dose–response framework. Toxicol Appl Pharm 222:122–128

    Article  CAS  Google Scholar 

  • Chelliah S, Heinrichs EA (1980) Factors affecting insecticide-induced resurgence of the brown planthopper, Nilaparvata lugens on rice. Environ Entomol 9:773–777

    Article  CAS  Google Scholar 

  • Chelliah S, Heinrichs EA, Smith WH (1984) Factors contributing to brown planthopper resurgence. In: Smith WH, ed. Proceedings of the FAO/IRRI workshop on judicious and efficient use of insecticides on rice, pp 107–114

  • Chi H (1988) Life-table analysis incorporating both sexes and variable development rate among individuals. Environ Entomol 17:26–34

    Article  Google Scholar 

  • Chi H (2005) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/TwoSex-MSChart.Zip

  • Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24:225–240

    Google Scholar 

  • Cleveland CB, Bormettg A, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L, Balcer JL (2002) Enviromental fate of spinosad 1. Dissipation and degradation in aqueous system. J Agric Food Chem 50:3244–3256

    Article  CAS  Google Scholar 

  • Cloyd RA (2010) Western flower thrips management on greenhouse-grown crops. Kansas State University. http://www.ksre.ksu.edu/bookstore/pubs/mf2922.pdf

  • Costantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in ahormetic framework. Ecol Lett 13:1435–1447

    Article  Google Scholar 

  • Cutler GC (2013) Insect, insecticides and hormesis: evidence and considerations for study. Dose-Response 11:154–177

    Article  CAS  Google Scholar 

  • Dermauwa W, Wybouwa N, Rombauts S, Mentend B et al (2012) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. PNAS 17:E113–E122

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 2:81–106

    Article  Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives Insect Bio Phys. 58:166–174

    Article  CAS  Google Scholar 

  • Fukushima S, Kinoshita A, Puatanachokchai R, Kushida M, Wanibuchi H, Morimura K (2005) Hormesis and dose–response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis 26(11):1835–1845

    Article  CAS  Google Scholar 

  • Gong YH, Wu QJ, Zhang YJ, Xu BY (2009) Effect of sublethal concentration of spinosad on the activity of detoxifying enzymes in the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Chin J Pestic Sci 11:427–433

    CAS  Google Scholar 

  • Gong YH, Wu QJ, Zhang YJ, Xu BY (2010) Selection of Frankliniella occidentalis with low dose of spinosad and its susceptibility to other insecticides. Plant protection 36:138–141

    CAS  Google Scholar 

  • Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70(5):690–697

    Article  CAS  Google Scholar 

  • Guedes RNC, MagalhãesL C, CosmeL V (2009) Stimulatory Sublethal response of a generalist predator to permethrin: hormesis, hormoligosis, or homeostatic regulation? J Econ Entomol 102(1):170–176

    Article  CAS  Google Scholar 

  • Guedes NMP, Tolledo J, Correˆa AS, Guedes RNC (2010) Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J Appl Entomol 134:142–148

    Article  CAS  Google Scholar 

  • Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao XW (2013) Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Protection 48:29–34

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol 14:9643–9684

    Article  Google Scholar 

  • He YX, Zhao JW, Zheng Y, Weng QY, Biondi A, Desneux N, Wu KM (2013) Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int J Biol Sci 9:246–255

    Article  Google Scholar 

  • Hoy CW, Head GP, Hall FR (1998) Spatial heterogeneity and insect adaptation to toxins. Annu Rev Entomol 43:571–594

    Article  CAS  Google Scholar 

  • Kerns DL, Stewart SD (2000) Sublethal effects of insecticides on theintrinsic rate of increase of cotton aphid. Entomol Exp Appl 94:41–49

    Article  CAS  Google Scholar 

  • Lacasa A, Llorens JM (1996) Trips y su control biologico (I). Pisa Ediciones, Alicante

    Google Scholar 

  • LeOra Software (1997) POLO-PC: Probit and Logit Analysis. Berkeley, CA

  • Liang P, Tian YA, Biondi A, Desneux N, Gao XW (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898

    Article  CAS  Google Scholar 

  • Mao L, Franke J (2013) Hormesis in aging and neurodegeneration—a prodigy awaiting dissection. Int J Mol Sci 14:13109–13128

    Article  Google Scholar 

  • Mollema C, Steenhuis MM, Inggamer H, Soria C (1993) Evaluating the resistance to western flower thrips (Frankliniella occidentalis) in cucumber. IOBC/WPRS Bulletin 13:113–117

    Google Scholar 

  • Morse JG, Zareh N (1991) Pesticide-induced hormoligosis of citrus thrips (Thysanoptera: Thripidae) fecundity. J Econ Entomol 84:1169–1174

    Article  CAS  Google Scholar 

  • Reissig WH, Heinrichs EA, Valencia SL (1982) Effects of insecticides on Nilaparvatalugens and its predators: spiders, Microveliaatrolineata and Gyrtorhinus lividipennis. Environ Entomol 11:193–199

    Article  CAS  Google Scholar 

  • Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aqual Toxicol. 93:61–69

    Article  CAS  Google Scholar 

  • Rose RM, Warne MS, Lim RP (2004) Sensitivity of offspring to chronic 3,4-dichloranilne exposure varies with maternal exposure. Ecotoxicol Environ Saf 58:405–412

    Article  CAS  Google Scholar 

  • Rueda A, Shelton AM (2003) Development of a bioassay system for monitoring susceptibility in thrips tabaci. Pest Manag Sci 59:553–558

    Article  CAS  Google Scholar 

  • Salgado VL, Sheets JJ, Watson GB, Schmidt AL (1998) Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence of neural excitation. Pestic Biochem Physiol 60:103–110

    Article  CAS  Google Scholar 

  • Schuler MA (2011) Review P450 s in plant–insect interactions. Biochim Biophys Acta 1814:36–45

    Article  CAS  Google Scholar 

  • Singh JP, Marwaha KK (2000) Effects of sub-lethal concentrations of some insecticides on growth and development of maize stalk borer, Chilo partellus (Swinhoe) larvae. Shashpa 7:181–186

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman WH, San Francisco, CA

  • Suhett AL, Steinberg CEW, Santangelo JM, Bozelli RL, Farjalla VF (2011) Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environ Sci Pollut Res 18:1004–1014

    Article  CAS  Google Scholar 

  • Tan Y, Biondi A, Desneux N, Gao XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Du¨ r). Ecotoxicology 21:1989–1997

    Article  CAS  Google Scholar 

  • Terriere LC (1984) Induction of detoxication enzymes in insects. Ann Rev Entomol. 29:71–88

    Article  CAS  Google Scholar 

  • Vogt GC, Nowak Diogo JB, Oetken M, Schwenk K, Oehlmann J (2007) Multi-generation studies with Chironomusriparius: effects of low tributyltin concentrations on life history parameters and genetic diversity. Chemosphere 67:2192–2200

    Article  CAS  Google Scholar 

  • Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wang MY (2005) Selective insecticide-induced stimulationon fecundity and biochemical changes in Tryporyzaincertulas (Lepidoptera: Pyralidae). J Econ Entomol 98:1144–1149

    Article  CAS  Google Scholar 

  • Wang D, Gong PY, Li M, Qiu XH, Wang KY (2009) Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag Sci 65:223–227

    Article  CAS  Google Scholar 

  • Yin XH, Wu QJ, Li XF, Zhang YJ, Xu BY (2009) Demographic changes in multigeneration plutella xylostella (Lepidoptera: Plutellidae) after exposure to sublethal concentrations of spinosad. J Econ Entomol 102:357–365

    Article  CAS  Google Scholar 

  • Zalizniak L, Nugegoda D (2006) Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicol Environ Saf 64:207–214

    Article  CAS  Google Scholar 

  • Zhang ZJ, Wu QJ, Li XF, Zhang YJ, Xu BY, Zhu GR (2007) Life history of western flower thrips, Frankliniella occidentalis (Thysan., Thripae) on five different vegetable leaves. J Appl Entomol 131:347–354

    Article  Google Scholar 

  • Zhang J, Yuan FH, Liu J, Chen HD, Zhang RJ (2010) Sublethal effects of nitenpyram on life-table parametersand wing formation of Nilaparvata lugens (Stål)(Homoptera: Delphacidae). Appl Entomol Zool 45:569–574

    Article  Google Scholar 

Download references

Acknowledgments

We thank Vicki Stewart (Buena Vista University, Storm Lake, IA 50588, United States) for copyediting the manuscript. This work was funded by Grants from the National Science and Technology Support Plan (2012BAD19B06), the Natural Science Foundation of China (31371965), Special Fund for Agro-scientific Research in the Public Interest (201103026), Beijing Leafy Vegetables Innovation Team of Modern Agro-industry Technology Research System (blvt-15), and Beijing Key laboratory for Pest Control and Sustainable Cultivation of Vegetables.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Xu, B., Zhang, Y. et al. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response. Ecotoxicology 24, 1141–1151 (2015). https://doi.org/10.1007/s10646-015-1461-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1461-5

Keywords

Navigation