Skip to main content
Log in

Glyceria maxima as new test species for the EU risk assessment for herbicides: a microcosm study

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In its recent guidance document on tiered risk assessment for plant protection products for aquatic organisms, the European Food Safety Authority (EFSA) proposed to use Glyceria maxima as monocotyledonous grass species for the testing of special herbicide groups. However, published toxicity data for this species is very limited and there is no test guideline for Glyceria sp. For this reason a microcosm study was conducted in order to gain experience on the degree of sensitivity of G. maxima to the herbicidal substances clodinafop-propargyl (grass herbicide) and fluroxypyr (auxin) in comparison to the already established test organism water milfoil Myriophyllum spicatum and the duckweed species Landoltia punctata. Five concentrations without replicates were tested for each test substance using 10 microcosms and three microcosms served as controls. The experiment was run for 8 weeks. Morphological endpoints were used to determine growth and EC50 values. The results show that M. spicatum was most sensitive to fluroxypyr (37 days EC50 for roots: 62 µg/L) and G. maxima most sensitive to clodinafop-propargyl (22 days EC50 for total shoot length: 48 µg/L) whereas the duckweed species was considerable less sensitive. Hence, G. maxima turns out to be a good candidate for testing grass specific herbicides, supporting its inclusion as an additional macrophyte test for the risk assessment of herbicides as proposed by the EFSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AMEG Report (2012) Myriophyllum Toxicity Test. Results of a ringtest using M. aquaticum and M. spicatum grown in a sediment-water test system. SETAC Aquatic Macrophyte Ecotoxicology Group (AMEG), final report (http://www.toxrat.de/index.php/70.html). Accessed 28 May 2014

  • Arts GHP, Belgers JDM, Hoekzema CH, Thissen JTNM (2008) Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests. Environ Pollut 153:199–206

    Article  CAS  Google Scholar 

  • Belkebir E, Rousselle C, Duboudin C, Bodin L, Bonvallot N (2011) Haber’s rule duration adjustments should not be used systematically for risk assessment in public health decision-making. Toxicol Lett 204:148–155

    Article  CAS  Google Scholar 

  • Berghahn R, Brandsch J, Piringer O, Pluta H-J, Winkler T (1999) On the suitability of fiberglass reinforced polyester as building material for mesocosms. Ecotox Environ Saf 43:267–273

    Article  CAS  Google Scholar 

  • Brock TCM, Lahr J, Van den Brink P (2000) Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides. Wageningen, Alterra

    Google Scholar 

  • Caquet T, Lagadic L, Sheffield S (2000) Mesocosms in ecotoxicology (1): outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38

    CAS  Google Scholar 

  • Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 61:1152–1160

    Article  CAS  Google Scholar 

  • Coutris C, Merlina G, Silvestre J, Pinelli E, Elger A (2011) Can we predict community-wide effects of herbicides from toxicity tests on macrophyte species? Aquat Toxicol 101:49–56

    Article  CAS  Google Scholar 

  • Cuppen JGM, Van den Brink PJ, Van der Woude H, Zwaardemaker N, Brock TCM (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. II. Community metabolism and invertebrates. Ecotox Environ Saf 38:25–35

    Article  CAS  Google Scholar 

  • Dabrowski JM, Schulz R (2003) Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa: comparison of runoff and spray drift. Environ Toxicol Chem 22:494–500

    Article  CAS  Google Scholar 

  • Davies J, Honegger JL, Tencalla FG, Meregalli G, Brain P, Newman JR, Pitchford HF (2003) Herbicide risk assessment for non-target aquatic plants: sulfosulfuron—a case study. Pest Manage Sci 59:231–237

    Article  CAS  Google Scholar 

  • DIN EN ISO 11732 (2005) Wasserbeschaffenheit- Bestimmung von Ammoniumstickstoff- Verfahren mittels Fließanalytik (CFA und FIA) und spektrometrischer Detektion, Deutsche Fassung

  • DIN EN ISO 13395 (1996) Bestimmung von Nitritstickstoff, Nitratstickstoff und der Summe von beiden mit der Fließanalytik (CFA und FIA) und spektrometrischer Detektion, Deutsche Fassung

  • DIN EN ISO 15681-2 (2004) Wasserbeschaffenheit- Bestimmung von Ortophosphat und Gesamtphosphor mittels Fließanalytik (FIA und CFA); Teil 2: Verfahren mittels kontinuierlicher Durchflussanalyse (CFA), Deutsche Fassung

  • DIN EN ISO 16264 (2004) Wasserbeschaffenheit- Bestimmung löslicher Silicate mittels Fließanalytik (FIA und CFA) und photometrischer Detektion, Deutsche Fassung

  • DIN EN ISO 9963-1 (1995) Wasserbeschaffenheit- Bestimmung der Alkalinität, Teil 1: Bestimmung der gesamten und der zusammengesetzten Alkalinität, Deutsche Fassung

  • Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30:2786–2792

    Article  CAS  Google Scholar 

  • EFSA (2013) European Food Safety Authority. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11:1–268

    Google Scholar 

  • EPA (US Environmental Protection Agency) (1998) Fluroxypyr pesticide fact sheet. http://www.epa.gov/opp00001/chem_search/reg_actions/registration/fs_PC-128959_30-Sep-98.pdf. Accessed 28 May 2014

  • EPA (US Environmental Protection Agency) (2000) Clodinafop-propargyl pesticide fact sheet. http://www.epa.gov/opp00001/chem_search/reg_actions/registration/fs_PC-125203_06-Jun-00.pdf. Accessed 28 May 2014

  • FAO—Food and Agriculture organization of the United Nations (2006) FAO Specifications and evaluations for agricultural pesticides—Clodinafop-propargyl: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Clodinafop08.pdf. Accessed 28 May 2014

  • FOCUS (2006) Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration”. Report of the FOCUS Work 91 Group on degradation kinetics, EC Document Reference Sanco/10058/2005 version 2.0

  • Guardo A, Williams R, Matthiessen P, Brooke D, Calamari D (1994) Simulation of pesticide runoff at Rosemaund Farm (UK) using the SoilFug model. Environ Sci Pollut Res 1:151–160

    Article  CAS  Google Scholar 

  • Heberer T (1995) Identifizierung und Quantifizierung von Pestizidrückständen und Umweltkontaminanten in Grund- und Oberflächenwassern mittels Kapillargaschromatographie- Massenspektrometrie. Wissenschaft & Technik Verlag, Berlin

    Google Scholar 

  • Hock B, Fedtke C, Schmidt RR (1995) Herbizide—Entwicklung, Anwendung, Wirkungen, Nebenwirkungen. Georg Thieme Verlag, Stuttgart

  • Jager T (2014) Reconsidering sufficient and optimal test design in acute toxicity testing. Ecotoxicology 23:38–44

    Article  CAS  Google Scholar 

  • Knauer K, Vervliet-Scheebaum M, Dark RJ, Maund SJ (2006) Methods for assessing the toxicity of herbicides to submersed aquatic plants. Pest Manag Sci 62:715–722

    Article  CAS  Google Scholar 

  • Krausch G (1996) Farbatlas Wasser- und Uferpflanzen. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    Article  CAS  Google Scholar 

  • Lampert W, Sommer U (1999) Limnoökologie. Thieme, Stuttgart

  • Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87:319–336

    Article  CAS  Google Scholar 

  • Liber K, Kaushik NK, Solomon KR, Carey JH (1992) Experimental designs for aquatic mesocosm studies: a comparison of the “ANOVA” and “Regression” design for assessing the impact of Tetrachlorphenol on zooplankton populations in limnocorrals. Environ Toxicol Chem 11:61–77

    CAS  Google Scholar 

  • Liu F, O’Connell NV (2003) Simazine runoff from citrus orchards affected by shallow mechanical incorporation. J Environ Qual 32:78–83

    Article  Google Scholar 

  • Lüttge U, Kluge M, Bauer G (1997) Botanik. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Maltby L, Arts G, Heimbach F, Davies J, Pickl C, Poulsen V (2010) Aquatic macrophyte risk assessment for pesticides. CRC Press, Florida

    Google Scholar 

  • Mohr S, Feibicke M, Ottenströer T, Meinecke S, Berghahn R, Schmidt R (2005) Enhanced experimental flexibility and control in ecotoxicological mesocosm experiments—A new outdoor and indoor pond and stream system. Environ Sci Pollut Res 12:5–7

    Article  Google Scholar 

  • Mohr S, Berghahn R, Feibicke M, Meinecke S, Ottenströer T, Schmiedling I, Schmiediche R, Schmidt R (2007) Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms. Aquat Toxicol 82:73–84

    Article  CAS  Google Scholar 

  • Mohr S, Berghahn R, Mailahn W, Schmiediche R, Feibicke M, Schmidt R (2009) Toxic and accumulative potential of the antifouling biocide and TBT successor Irgarol on freshwater macrophytes: a pond mesocosm study. Environ Sci Technol 43:6838–6843

    Article  CAS  Google Scholar 

  • Mohr S, Schott J, Maletzki D, Hünken A (2013) Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity. Ecotox Environ Saf 97:32–39

    Article  CAS  Google Scholar 

  • Neumann M, Schulz R, Schäfer K, Müller W, Mannheller W, Liess M (2002) The significance of entry routes as point and non-point sources of pesticides in small streams. Water Res 36:835–842

    Article  CAS  Google Scholar 

  • OECD (2006) Guidance document on simulated freshwater lentic field tests (outdoor microcosms and mesocosms). Environment health and safety publications series on testing and assessment, ENV/JM/MONO 17, Paris

  • PAN—Pesticide Action Network (PAN) Pesticides Database (2010a) Toxicity studies for fluroxypyr on aquatic plants: http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC36365&Taxa_Group=AquaticPlants. Accessed 28 May 2014

  • PAN—Pesticide Action Network (PAN) Pesticides Database (2010b) Toxicity studies for clodinafop-propargyl on aquatic plants: http://www.pesticideinfo.org/List_AquireAll.jsp?Rec_Id=PC38156&Taxa_Group=AquaticPlants. Accessed 28 May 2014

  • Schmidt R, Brockmeyer R (2002) Vorkommen und Verhalten von Expektorantien, Analgetika, Xylometazolin und deren Metaboliten in Gewässern und bei der Uferfiltration. Vom Wasser 98:37–54

    CAS  Google Scholar 

  • Tomlin CDS (2009) The pesticide manual: a world compendium of pesticides, 15th edn. British Crop Protection Council, Alton

    Google Scholar 

  • UBA Report (2011) Myriophyllum spicatum toxicity test: Results of an inter-laboratory ring test using a sediment-free test system. FKZ: 363 01 294; Final report. Federal Environment Agency, Division IV, Chemical and Biological Safety (http://www.oecd.org/env/ehs/testing/Report%20of%20ring%20test%20Myriophyllum-sediment-free_5%20March%202013.pdf). Accessed 28 May 2014

  • Vervliet-Scheebaum M, Knauer K, Maund SJ, Grade R, Wagner E (2006) Evaluating the necessity of additional aquatic plant testing by comparing the sensitivities of different species. Hydrobiologia 570:231–236

    Article  CAS  Google Scholar 

  • Vervliet-Scheebaum M, Straus A, Tremp H, Hamer M, Maund SJ, Wagner E, Schulz R (2010) A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes. Environ Pollut 158:615–623

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology. Lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Wittmer I, Moschet C, Simovic J, Singer H, Stamm C, Hollender J (2014) Über 100 Pestizide in Fliessgewässern. Aqua and Gas 3:32–43

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miriam Langer, Karin Friede and the staff of the FSA for their practical support. Special thanks also to Stefan Loth and Ronny Schmiediche for their technical help. The analytical part of the department IV 2.5 is acknowledged for the chemical analysis. Jörn Wogram is thanked for his inspiring contributions to this project, and Ian Williams for the English spell check.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, S., Schott, J., Hoenemann, L. et al. Glyceria maxima as new test species for the EU risk assessment for herbicides: a microcosm study. Ecotoxicology 24, 309–320 (2015). https://doi.org/10.1007/s10646-014-1379-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1379-3

Keywords

Navigation