, Volume 23, Issue 9, pp 1814–1822 | Cite as

Water-extractable priority contaminants in LUFA 2.2 soil: back to basics, contextualisation and implications for use as natural standard soil

  • A. C. Bastos
  • M. Prodana
  • J. M. M. Oliveira
  • C. F. Calhôa
  • M. J. G. Santos
  • A. M. V. M. Soares
  • S. Loureiro
Technical Note


The natural LUFA 2.2 standard soil has been extensively used in hazard assessment of soil contaminants, combining representation with ecological relevance for accurate risk evaluation. This study revisited the water-extractable fraction of LUFA 2.2 soil, through consecutive soil wet–dry cycles and discusses implications of use as standard substrate in derivation of ecotoxicological data and toxicity thresholds. Potentially bioavailable contents of metals (177.9–888.7 µg/l) and the 16 polycyclic aromatic hydrocarbons (PAHs; 0.064–0.073 µg/l) were dependent on the number of soil wetting–drying cycles applied. Such contents were screened based on current EU guidelines for surface waters and reported toxicological benchmarks for aquatic organisms. Aqueous concentrations generally fit within recommended Environmental Quality Standards (EQS), except for Hg (0.13–0.22 µg/l; >Maximum Allowable Concentration—MAC—of 0.07 µg/l) and for the sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene (0.005 µg/l; >double the Annual Average of 0.002 µg/l). Further, aqueous As, Zn, Cd, Ni and Cr concentrations exceeded ‘lower benchmark’ values for aquatic organisms, possibly reflecting an inadequate derivation for ecotoxicological data. In turn, PAHs in LUFA 2.2 soil aqueous extracts, whilst individually, are not likely to constitute a hazard to test biota exposed to its aqueous fractions. This study urges for potentially bioavailable fractions of reference and standard natural soils to be adequately characterized and addressed as part of the research aim, experimental approach and design, as well as the expected scope of the outcomes.


LUFA 2.2 Standard soil Potential bioavailability Contaminants Toxicity thresholds 



This study was supported by European Funds through COMPETE and National Funds through the Portuguese Science Foundation (FCT), within projects PEst-C/MAR/LA0017/2013, FUTRICA (FCOMP-01-0124-FEDER-00008600) and CLIMAFUN (FCOMP-01-0124-FEDER-008656), which included the post-doctoral fellowships of Ana C. Bastos (BPD/CESAM/PTDC/AAC-AMB/104666/2008) and Jacinta M.M. Oliveira (BPD/UI88/6463/2013), respectively. The authors also wish to acknowledge the FCT-funded post-doctoral fellowships of Carla F. Calhôa (SFRH/BPD/74232/2010) and Miguel J.G. Santos (SFRH/BPD/72380/2010), as well as the European Commission through the Erasmus Mundus Program for the MSc Grant to Marija Prodana. Amadeu M.V.M. Soares is ‘Bolsista CAPES/BRASIL’, Project No. A058/2013.

Conflict of interest

Authors declare that they have no conflict of interest.


  1. Antoniadis V, Alloway BJ (2002) The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut 117:515–521CrossRefGoogle Scholar
  2. Caetano AL, Gonçalves F, Sousa JP, Cachada A, Pereira E, Duarte AC, Ferreira da Silva E, Pereira R (2012) Characterization and validation of a Portuguese natural reference soil to be used as substrate for ecotoxicological purposes. J Environ Monit 14(3):925–936CrossRefGoogle Scholar
  3. Campos I, Abrantes N, Vidal T, Bastos AC, Gonçalves F, Keizer JJ (2012) Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur J For Res 131(6):1889–1903. doi: 10.1007/s10342-012-0640-7 CrossRefGoogle Scholar
  4. Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556CrossRefGoogle Scholar
  5. COM (2006) 232 Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. COM/2006/0232 final-COD 2006/0086.
  6. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008, on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 84/513/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Accessed 15 June 2011
  7. Domene X, Chelinho S, Campana P, Natal-da-Luz T, Alcaniz JM, Andres P, Rombke J, Sousa P (2011) Influence of soil properties on the performance of Folsomia candida: implications for its use in soil ecotoxicology testing. Environ Toxicol Chem 30(7):1497–1505CrossRefGoogle Scholar
  8. EC (1996) Technical Guidance Documents in support of Directive 93/97/EC of new notified substances and Regulation EC No 1488/94 on risk assessment of existing substances, BrusselsGoogle Scholar
  9. EC (2003) Technical Guidance Documents in support of Directive 93/97/EC of new notified substances, Regulation EC No 1488/94 on risk assessment of existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, BrusselsGoogle Scholar
  10. Economou-Eliopoulos M, Megremi I, Vasilatos C (2011) Factors controlling the heterogeneous distribution of Cr(VI) in soil, plants and groundwater: evidence from the Assopos basin, Greece. Chemie der Erde - Geochemistry 71(1):39–52CrossRefGoogle Scholar
  11. Eisentraeger A, Rila J-P, Hund-Rinke K, Roembke J (2004) Proposal of a testing strategy and assessment criteria for the ecotoxicological assessment of soil or soil materials. J Soils Sediments 4(2):123–128. doi: 10.1007/BF02991056 CrossRefGoogle Scholar
  12. Fernández MD, Vega MM, Tarazona JV (2006) Risk-based ecological soil quality criteria for the characterization of contaminated soils. Combination of chemical and biological tools. Sci Total Environ 366(2–3):466–484. doi: 10.1016/j.scitotenv.2006.01.013 CrossRefGoogle Scholar
  13. Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51(2):133–144. doi: 10.1006/eesa.2001.2124 CrossRefGoogle Scholar
  14. Frische T, Mebes K-H, Filser J (2003) Assessing the Bioavailability of Contaminants in Soils: A Review on Recent Concepts. Umweltbundesamt, GermanyGoogle Scholar
  15. Gonçalves SF, Calado R, Gomes NCM, Soares AMVM, Loureiro S (2013) An ecotoxicological analysis of the sediment quality in a European Atlantic harbor emphasizes the current limitations of the Water Framework Directive. Mar Pollut Bull 72(1):197–204. doi: 10.1016/j.marpolbul.2013.04.003 CrossRefGoogle Scholar
  16. Holmstrup M, Petersen BF, Larsen MM (1998) Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons. Environ Toxicol Chem 17(5):897–901. doi: 10.1002/etc.5620170518 CrossRefGoogle Scholar
  17. Hund-Rinke K, Kördel W (2003) Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol Environ Saf 56(1):52–62CrossRefGoogle Scholar
  18. Jablonowski ND, Linden A, Köppchen S, Thiele B, Hofmann D, Burauel P (2012) Dry–wet cycles increase pesticide residue release from soil. Environ Toxicol Chem 31(9):1941–1947. doi: 10.1002/etc.1851 CrossRefGoogle Scholar
  19. Jensen J, Pedersen M (2006) Ecological Risk Assessment of Contaminated Soil. In: Albert L, Voogt P, Gerba C et al. (eds) Reviews of environmental contamination and toxicology, vol 186. Reviews of environmental contamination and toxicology. Springer, New York, pp 73-105. doi: 10.1007/0-387-32883-1_3
  20. Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31(1):214–217. doi: 10.1021/es960354j CrossRefGoogle Scholar
  21. Kuhnt G, Murphy P, Poremski HJ, Herrmann M (1994). Background and historical evolution of the EUROSOILproject. In: Kuhnt G, Muntau H (eds) EUROSOILS identification, collection, treatment, characterization. European Commission, Ispra (Italy), Special Publication No. 1.94.60, pp 3–9Google Scholar
  22. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57(1):39–47. doi: 10.1016/j.ecoenv.2003.08.014 CrossRefGoogle Scholar
  23. Loureiro S, Ferreira AL, Soares AM, Nogueira AJ (2005a) Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61(2):168–177. doi: 10.1016/j.chemosphere.2005.02.070 CrossRefGoogle Scholar
  24. Loureiro S, Soares AM, Nogueira AJ (2005b) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138(1):121–131CrossRefGoogle Scholar
  25. Ma W-C, van Kleunen A, Immerzeel J, de Maagd PG-J (1998) Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: assessment of equilibrium partitioning theory in in situ studies and water experiments. Environ Toxicol Chem 17(9):1730–1737. doi: 10.1002/etc.5620170913 CrossRefGoogle Scholar
  26. Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B (2008) Soil reference materials in ecotoxicity testing—application of the concept of EURO-soils to soils from Poland. Polish J Environ Stud 17(2):257–266Google Scholar
  27. Merrington G, Fishwick S, Brooke D (2006) The derivation and use of soil screening values for metals for the ecological risk assessment of contaminated land: a regulatory perspective. Land Contam Reclam 14(3):673–684CrossRefGoogle Scholar
  28. Organization for Economic Cooperation and Development (1984) Earthworm acute toxicity tests. OECD Guideline 207. Paris, FranceGoogle Scholar
  29. Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Total Environ 350(1–3):12–27. doi: 10.1016/j.scitotenv.2005.01.047 CrossRefGoogle Scholar
  30. Rocha L, Rodrigues SM, Lopes I, Soares AMVM, Duarte AC, Pereira E (2011) The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere 84(10):1495–1505. doi: 10.1016/j.chemosphere.2011.04.035 CrossRefGoogle Scholar
  31. Rodrigues SM, Henriques B, Ferreira da Silva E, Pereira ME, Duarte AC, Romkens PF (2010) Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part I—the role of key soil properties in the variation of contaminants’ reactivity. Chemosphere 81(11):1549–1559CrossRefGoogle Scholar
  32. Römbke J, Jansch S, Junker T, Pohl B, Scheffczyk A, Schallnass HJ (2006) Improvement of the applicability of ecotoxicological tests with earthworms, springtails, and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25(3):776–787CrossRefGoogle Scholar
  33. Sijm D, Kraaij R, Belfroid A (2000) Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ Pollut 108(1):113–119. doi: 10.1016/S0269-7491(99)00207-9 CrossRefGoogle Scholar
  34. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRefGoogle Scholar
  35. Suter II GW (1995) Guide for Performing Screening Ecological Risk Assessments at DOE Facilities. ES/ER/TM-153 US department of Energy, Oak Ridge National Laboratory.
  36. Suter II GW, Tsao CL (1996) Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 Revision. ES/ER/TM-96/R2 US department of Energy, Oak Ridge National Laboratory.
  37. ter Laak TL, Barendregt A, Hermens JLM (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ Sci Technol 40(7):2184–2190. doi: 10.1021/es0524548 CrossRefGoogle Scholar
  38. U.S. EPA (1992) Great Lakes water quality initiative Tier II water quality values for protection for aquatic life in ambient water. Supporting documentsGoogle Scholar
  39. U.S. EPA (1993a) Water quality guidance for the Great Lakes system and correction. Proposed rules. Fed Regist 58(72):20802–201047Google Scholar
  40. U.S. EPA (1993b) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn. Weber CI (ed) Federal Register EPA/600/4-90/027FGoogle Scholar
  41. U.S. EPA (1996) Ecotox thresholds. Office of solid waste and emergency response (OSWER). ECO Update 3(2):1–12Google Scholar
  42. van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406(3):385–395CrossRefGoogle Scholar
  43. van Gestel CA, Koolhaas JE (2004) Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations. Environ Toxicol Chem 23(8):1822–1833CrossRefGoogle Scholar
  44. van Gestel CAM, van der Waarde JJ, Derksen JG, van der Hoek EE, Veul MF, Bouwens S, Rusch B, Kronenburg R, Stokman GN (2001) The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ Toxicol Chem 20(7):1438–1449CrossRefGoogle Scholar
  45. van Straalen NM, Donker MH, Vijver MG, van Gestel CA (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136(3):409–417CrossRefGoogle Scholar
  46. Weeks JM, Comber SDW (2005) Ecological risk assessment of contaminated soil. Mineral Mag 69(5):601–613. doi: 10.1180/0026461056950274 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. C. Bastos
    • 1
  • M. Prodana
    • 1
  • J. M. M. Oliveira
    • 1
  • C. F. Calhôa
    • 1
  • M. J. G. Santos
    • 1
  • A. M. V. M. Soares
    • 1
    • 2
  • S. Loureiro
    • 1
  1. 1.Department of Biology and CESAMUniversity of AveiroAveiroPortugal
  2. 2.Programa de Pós-Graduação em Produção VegetalUniversidade Federal do TocantinsGurupiBrazil

Personalised recommendations