, Volume 22, Issue 1, pp 1–12 | Cite as

Designing ionic liquids: the chemical structure role in the toxicity

  • Sónia P. M. Ventura
  • Ana M. M. Gonçalves
  • Tânia Sintra
  • Joana L. Pereira
  • Fernando Gonçalves
  • João A. P. Coutinho


Ionic liquids (ILs) are a novel class of solvents with interesting physicochemical properties. Many different applications have been reported for ILs as alternatives to organic solvents in chemical and bioprocesses. Despite the argued advantage of having low vapor pressure, even the most hydrophobic ILs show some degree of solubility in water, allowing their dispersion into aquatic systems and raising concerns on its pollutant potential. Moreover, nowadays most widespread notion concerning the ILs toxicity is that there is a direct relationship with their hydrophobicity/lipophilicity. This work aims at enlarging the currently limited knowledge on ILs toxicity by addressing negative impacts in aquatic ecosystems and investigating the possibility of designing hydrophobic ILs of low ecotoxicity, by the manipulation of their chemical structures. The impact of aromaticity on the toxicity of different cations (pyridinium, piperidinium, pyrrolidinium and imidazolium) and hydrophobic anions (bis(trifluoromethylsulfonyl)imide [NTf2] and hexafluorophosphate [PF6]) was analysed. Concomitantly, several imidazolium-based ILs of the type [C n C m C j im][NTf2] were also studied to evaluate the effects of the position of the alkyl chain on the ILs’ toxicity. For that purpose, standard assays were performed using organisms of different trophic levels, Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna, allowing to evaluate the consistency of the structure–activity relationships across different biological targets. The results here reported suggest the possibility of designing ILs with an enhanced hydrophobic character and lower toxicity, by elimination of their aromatic nature.


Ionic liquids Toxicological tests Aquatic toxicity EC50 Aromatic/aliphatic nature Isomerism 



The authors are grateful for financial support from FEDER funds through the Program COMPETE and by National Fund through the Portuguese Foundation for Science and Technology (FCT) under the scope of the Projects Pest-C/CTM/LA0011/2011 and PTDC/AAC-AMB/119172/2010. The authors also thank financial support through the Post-doctoral Grants SFRH/BPD/79263/2011 and SFRH/BPD/44733/2008 of S. P. M. Ventura and J. L. Pereira, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2012_997_MOESM1_ESM.doc (107 kb)
Supplementary material 1 (DOC 107 kb)


  1. Allen DT, Shonnard DR (2002) Green engineering. Prentice Hall, Upper Saddle RiverGoogle Scholar
  2. Arning J, Stolte S, Boschen A, Stock F, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2008) Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10:47–58CrossRefGoogle Scholar
  3. ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians, E 729–80. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  4. Austin RP, Barton P, Davis AM, Manners CN, Stansfield MC (1998) The effect of ionic strength on liposome-buffer and 1-octanol-buffer distribution coefficients. J Pharm Sci 87:599–607CrossRefGoogle Scholar
  5. Azur Environmental (1998) Microtox manual. Carlbad CA, USAGoogle Scholar
  6. Baird DJ, Barber I, Bradley MC, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188/189: 403–406Google Scholar
  7. Beadham MG, Gathergood N (2012) Handbook of Green chemistry. In: Boethling R, Voutchkova A (eds) Designing safer chemicals—ionic liquids, Chap. 6, vol 9, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 137–158Google Scholar
  8. Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92CrossRefGoogle Scholar
  9. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384–2389CrossRefGoogle Scholar
  10. Cho C-W, Jeon Y-C, Pham TPT, Vijayaraghavan K, Yun Y-S (2008a) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171CrossRefGoogle Scholar
  11. Cho C-W, Pham TPT, Jeon Y-C, Yun Y-S (2008b) Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem 10:67–72CrossRefGoogle Scholar
  12. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637CrossRefGoogle Scholar
  13. Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90CrossRefGoogle Scholar
  14. Cowgill UM, Milazzo DP (1991) The sensitivity of Ceriodaphnia dubia and Daphnia magna to seven chemicals utilizing the three-brood test. Arch Environ Contam Toxicol 20:211–217CrossRefGoogle Scholar
  15. Deetlefs M, Seddon KR (2006) Ionic liquids: fact and fiction. Chim Oggi Chem Today 24:16–23Google Scholar
  16. Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30. doi: 10.1039/b915049h CrossRefGoogle Scholar
  17. Docherty KM, Kulpa CFJ (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189CrossRefGoogle Scholar
  18. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398CrossRefGoogle Scholar
  19. Earle MJ, Esperanca J, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. doi: 10.1038/nature04451 CrossRefGoogle Scholar
  20. EC (2002) European Commission Guidance document on aquatic ecotoxicology. Under Council directive 91/414/EEC. SANCO/3268/2001 Rev 4Google Scholar
  21. EPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th edn. EPA-821-R-02-013Google Scholar
  22. Finney DJ (1971) Probit Analysis. Cambridge University Press, CambridgeGoogle Scholar
  23. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007a) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 111:13082–13089CrossRefGoogle Scholar
  24. Freire MG, Santos LMNBF, Fernandes AM, Coutinho JAP, Marrucho IM (2007b) An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems. Fluid Phase Equilib 261:449–454CrossRefGoogle Scholar
  25. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos LMNBF, Coutinho JAP (2008a) Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids. J Phys Chem B 112:1604–1610CrossRefGoogle Scholar
  26. Freire MG, Carvalho PJ, Gardas RL, Santos LMNBF, Marrucho IM, Coutinho JAP (2008b) Solubility of water in tetradecyltrihexylphosphonium-based ionic liquids. J Chem Eng Data 53:2378–2382. doi: 10.1021/je8002805 CrossRefGoogle Scholar
  27. Freire MG, Carvalho PJ, Silva AMS, Santos LMNBF, Rebelo LPN, Marrucho IM, Coutinho JAP (2009) Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 113:202–211CrossRefGoogle Scholar
  28. Freire MG, Neves CMSS, Marrucho IM, Coutinho JAP, Fernandes AM (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquid. J Phys Chem A 114:3744–3749CrossRefGoogle Scholar
  29. Freire MG, Cláudio AFM, Araújo JMM, Coutinho JAP, Marrucho IM, Canongia Lopes JN, Rebelo LPN (2012) Aqueous Biphasic Systems: a boost brought about by using ionic liquids. Chem Soc Rev. 41:4966–4995CrossRefGoogle Scholar
  30. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7:9–14CrossRefGoogle Scholar
  31. Gathergood N, Scammells PJ (2002) Design and preparation of room-temperature ionic liquids containing biodegradable side chains. Aust J Chem 55:557–560CrossRefGoogle Scholar
  32. Gathergood N, Scammells PJ, Garcia MT (2004) Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175CrossRefGoogle Scholar
  33. Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids Part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160CrossRefGoogle Scholar
  34. Gonçalves AMM, de Figueiredo DR, Pereira MJ (2005) A low-cost methodology for algal growth inhibition tests using three freshwater green algae. Fresenius Environ Bull 14:1192–1195Google Scholar
  35. Gorman-Lewis DJ, Fein JB (2004) Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces. Environ Sci Technol 38:2491–2495CrossRefGoogle Scholar
  36. Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Pollut Res J Can 26:361–431Google Scholar
  37. Kaniewska- Prus M (1982) The effect of ammonia, chlorine and chloramines toxicity on the mortality of Daphnia magna Straus. Pol Arch Hydrobiol 29:607–624Google Scholar
  38. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571CrossRefGoogle Scholar
  39. Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110CrossRefGoogle Scholar
  40. Latala A, Stepnowski P, Nedzi M, Mrozik W (2005) Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat Toxicol 73:91–98CrossRefGoogle Scholar
  41. Latala A, Nedzi M, Stepnowski P (2009a) Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae. Environ Toxicol Pharmacol 28:167–171CrossRefGoogle Scholar
  42. Latala A, Nedzi M, Stepnowski P (2009b) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371–1376CrossRefGoogle Scholar
  43. Latala A, Nedzi M, Stepnowski P (2009c) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588CrossRefGoogle Scholar
  44. Luo Y-R, Li X-Y, Chen X-X, Zhang B-J, Sun Z-J, Wang J-J (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744CrossRefGoogle Scholar
  45. Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207CrossRefGoogle Scholar
  46. Matzke M, Arning J, Ranke J, Jastorff B, Stolte S (2010) Design of inherently safer ionic liquids: toxicology and biodegradation. In: Handbook of green chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 225–290. doi: 10.1002/9783527628698.hgc069
  47. Microbics Corporation (1992) Microtox® manual—a toxicity testing handbook. Microbics Corporation, Carlsbad, pp 1–5Google Scholar
  48. OECD (2004) Daphnia sp., acute immobilisation test—test guideline 202. Organization for the Economic Cooperation and Development, ParisGoogle Scholar
  49. OECD (2008) Daphnia magna reproduction test–test guideline 211. Organization for the Economic Cooperation and Development, ParisGoogle Scholar
  50. OECD (2011) Freshwater alga and cyanobacteria, growth inhibition test—test guideline 201. Organization for the Economic Cooperation and Development, ParisGoogle Scholar
  51. Passino DRM, Smith SB (1987) Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish. Environ Toxicol Chem 6:901–907CrossRefGoogle Scholar
  52. Plechkova NV, Seddon KR (2007) Ionic liquids: “Designer” solvents for green chemistry, in methods and reagents for green chemistry, vol 38. John Wiley & Sons, Inc, pp 103–130Google Scholar
  53. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefGoogle Scholar
  54. Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176CrossRefGoogle Scholar
  55. Ranke J, Molter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404CrossRefGoogle Scholar
  56. Ranke J, Muller A, Bottin-Weber U, Stock F, Stolte S, Arning J, Stormann R, Jastorff B (2007a) Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol Environ Saf 67:430–438. doi: 10.1016/j.ecoenv.2006.08.008 CrossRefGoogle Scholar
  57. Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007b) Design of sustainable chemical products the example of ionic liquids. Chem Rev 107:2183–2206. doi: 10.1021/cr050942s CrossRefGoogle Scholar
  58. Ranke J, Othman A, Fan P, Müller A (2009) Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity. Int J Mol Sci 10:1271–1289CrossRefGoogle Scholar
  59. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273CrossRefGoogle Scholar
  60. Salminen J, Papaiconomou N, Kumara A, Lee J-M, Kerr J, Newmana J, Prausnitz JM (2007) Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilib 261:421–426CrossRefGoogle Scholar
  61. Samorì C, Pasteris A, Galletti P, Tagliavini E (2007) Acute toxicity of oxygenated and nonoxygenated imidazolium-based ionic liquids to Daphnia magna and Vibrio fischeri. Environ Toxicol Chem 26:2379–2382CrossRefGoogle Scholar
  62. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407Google Scholar
  63. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk FV, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151CrossRefGoogle Scholar
  64. Smith DG (2001) Pennak’s freshwater invertebrates of the United States: Porifera to Crustacea, 4th edn. Wiley, New YorkGoogle Scholar
  65. Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) A review of environmental applications of bioluminescence measurements. Chemosphere 30:2155–2197CrossRefGoogle Scholar
  66. Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A 170:45–50CrossRefGoogle Scholar
  67. Stolte S, Arning J, Bottin-Weber U, Muller A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767CrossRefGoogle Scholar
  68. van Rantwijk FV, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRefGoogle Scholar
  69. Ventura SPM, Gonçalves AMM, Gonçalves F, Coutinho JAP (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol 96:290–297CrossRefGoogle Scholar
  70. Ventura SPM, Gardas RL, Gonçalves F, Coutinho JAP (2011) Ecotoxicological risk profile of ionic liquids: octanol–water distribution coefficients and toxicological data. J Chem Technol Biotechnol 86:957–963CrossRefGoogle Scholar
  71. Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, 2nd edn. Wiley-VCH-Verlag, WeinheimCrossRefGoogle Scholar
  72. Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798CrossRefGoogle Scholar
  73. Zhao H (2006) Innovative applications of ionic liquids as “green” engineering liquids. Chem Eng Commun 193:1660–1677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sónia P. M. Ventura
    • 1
  • Ana M. M. Gonçalves
    • 2
    • 3
  • Tânia Sintra
    • 1
  • Joana L. Pereira
    • 2
  • Fernando Gonçalves
    • 2
  • João A. P. Coutinho
    • 1
  1. 1.Departamento de Química, CICECOUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal
  2. 2.Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar)Universidade de AveiroAveiroPortugal
  3. 3.Departamento das Ciências da Vida, Faculdade de Ciências e Tecnologia, IMAR-CMA (Instituto do Mar)Universidade de CoimbraCoimbraPortugal

Personalised recommendations