, Volume 21, Issue 5, pp 1347–1357 | Cite as

Acute and chronic effects of atrazine and sodium dodecyl sulfate on the tropical freshwater cladoceran Pseudosida ramosa



Toxicities of atrazine and sodium dodecyl sulfate (SDS) to the tropical freshwater cladoceran Pseudosida ramosa were studied in the laboratory. Acute tests showed that the 48-h LC50 of atrazine was 20.9 mg l−1, while that of SDS was 11.1 mg l−1. P. ramosa showed to be slightly more sensitive than the other species of temperate cladocerans, in the assay conditions specified for each one. Long-term exposure of P. ramosa individuals to atrazine decreased the 21-day fecundity, the 21-day fertility and r m, at concentrations ranging from 0.8 to 3.2 mg l−1. Furthermore, fecundity and fertility at each brood decreased from the first to the fifth, at concentrations ranging from 0.8 to 3.2 mg l−1 and for the first three broods at the concentration of 0.4 mg l−1. Long-term exposure of female P. ramosa to SDS decreased the 21-day fecundity, the 21-day fertility and r m, at concentrations of 2 and 4 mg l−1. Fecundity and fertility of each brood were reduced from the first to the fifth, at concentrations of 2–4 mg l−1, and for the first three at concentrations of 0.5 and 1 mg l−1. The survival and moulting of the adult females were not affected by either chemical at the concentrations tested. Many water quality criteria in tropical regions are based on ecotoxicological tests with non-native species and this may lead to errors in setting the maximum permissible levels of chemicals in water bodies. Therefore, we reiterate here the idea of using native species in ecotoxicological assessments.


Organic pollutants Atrazine Sodium dodecyl sulfate Tropical cladocerans New test organism Pseudosida ramosa 



We are grateful to the São Paulo State Research Aid Foundation (FAPESP) for the financial support provided for this research project (No. 06/59397-3).


  1. ABNT–Associação Brasileira de Normas Técnicas (2010) Ecotoxicologia aquática–Toxicidade crônica–Método de ensaio com Ceriodaphnia spp (Crustacea, Cladocera) NBR 13373. Rio de Janeiro, p 18Google Scholar
  2. Adema DMM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59:125–134CrossRefGoogle Scholar
  3. Armas ED, Rosim-Monteiro RT, Amâncio AV, Correa RML, Guercio MA (2005) Uso de agrotóxicos em cana-de-açúcar na bacia do Rio Corumbataí e o risco de poluição hídrica. Quím Nova 28(6):975–982CrossRefGoogle Scholar
  4. Armas ED, Rosim-Monteiro RT, Antunes PM, dos Santos MAPF, Camargo PB, Abakerli RB (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes. Quím Nova 30(5):1119–1127CrossRefGoogle Scholar
  5. ASTM–American Society for Testing and Materials (1980) Standard practice for conducting acute toxicity test with fishes, macroinvertebrates and amphibians. E-790-80. PhiladelphiaGoogle Scholar
  6. Bailey HC, Miller JL, Miller MJ, Wiborg LC (1997) Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ Toxicol Chem 16:2304–2308Google Scholar
  7. Baillieul M, Blust R (1999) Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquat Toxicol 44:245–254CrossRefGoogle Scholar
  8. Baird DJ, Barber I, Calow P (1990) Clonal variation in general responses of Daphnia magna Straus to toxic stress. I chronic life history effects. Funct Ecol 4:399–407CrossRefGoogle Scholar
  9. Baird DJ, Barber I, Soares AMVM, Calow P (1991) An early life-stage test with Daphnia magna Straus: an alternative to the 21-day chronic test? Ecotoxcol Environ Safe 22:1–7CrossRefGoogle Scholar
  10. Biesinger KE, Christensen GM (1972) Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J Fish Res Board Can 29(12):1691–1700CrossRefGoogle Scholar
  11. Böhrer MBC (1995) Biomonitoramento da comunidade zooplanctônica das lagoas de tratamento terciário do sistema de tratamento dos efluentes líquidos das indústrias do Pólo Petroquímico do Sul, Triunfo, RS. Ph.D. thesis, Federal University of São Carlos, São Carlos, BrazilGoogle Scholar
  12. Bonaventura C, Johnson FM (1997) Healthy environments for healthy people: bioremediation today and tomorrow. Environ Health Perspect 105(1):5–20CrossRefGoogle Scholar
  13. Brandorff GO, Koste W, Smirnov NN (1982) The composition and structure of rotiferan and crustacean communities of the lower rio Nhamundá, Amazonas, Brazil. Stud Neotrop Fauna Environ 17(2–3):69–121CrossRefGoogle Scholar
  14. CETESB (2008) Relatório de Qualidade das Águas Interiores do Estado de São Paulo–Apêndice D–Resultados dos parâmetros e indicadores de qualidade das águas Accessed 27 June 2010
  15. Coelho KS (2008) Ecotoxicological studies with emphasis on evaluation of the toxicity of anionic surfactants to cladocerans Daphnia similis, Ceriodaphnia dubia and Ceriodaphnia silvestrii. Master thesis, Federal University of São Carlos, São Carlos, BrazilGoogle Scholar
  16. CONAMA (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Resolução CONAMA no 357, de 17 de março de 2005Google Scholar
  17. Cserháti T, Forgacs E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348CrossRefGoogle Scholar
  18. Day KE, Holtze KE, Metcalfe-Smith JL, Bishop CT, Dutka BJ (1993) Toxicity of leachate from automobile tires to aquatic biota. Chemosphere 27:665–675CrossRefGoogle Scholar
  19. DeNoyelles F, Kettle WD (1980) Herbicides in Kansas waters: evaluations of effects of agricultural runoff and aquatic weed control on aquatic food chains. Kansas Water Resources Research Institute, University of Kansas, Lawrence, KansasGoogle Scholar
  20. Dettmers JM, Stein RA (1992) Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans Am Fish Soc 121:494–507CrossRefGoogle Scholar
  21. Dewey SL (1986) Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67(1):148–162CrossRefGoogle Scholar
  22. Do Hong LC, Becker-Van Slooten K, Tarradellas J (2004) Tropical ecotoxicity testing with Ceriodaphnia cornuta. Environ Toxicol 19:497–504CrossRefGoogle Scholar
  23. Dodson SI, Merritt CM, Shannahan J, Shults CM (1999) Low exposure concentrations of atrazine increase male production in Daphnia pulicaria. Environ Toxicol Chem 18(7):1568–1573Google Scholar
  24. Downing HF, Delorenzo ME, Fulton MH, Scott GI, Madden CH, Kucklick JR (2004) Effects of the agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicology 13:245–260CrossRefGoogle Scholar
  25. Edser C (2006) Latest market analysis. Focus Surfactants 5:1–2Google Scholar
  26. Elías-Gutiérrez M, Smirnov NN, Suárez-Morales E, Dimas-Flores N (2001) New and little known cladocerans (Crustacea: Anomopoda) from southeastern Mexico. Hydrobiologia 442(1–3):41–54CrossRefGoogle Scholar
  27. Elmoor-Loureiro LMA (2007) Phytophilous cladocerans (Crustacea: Anomopoda and Ctenopoda) from Paranã River Valley, Goiás, Brazil. Rev Bras Zool 24(2):344–352CrossRefGoogle Scholar
  28. Emmanuel E, Hannab K, Bazinc C, Keckd G, Clémenta B, Perrodina Y (2005) Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms. Environ Int 31:399–406CrossRefGoogle Scholar
  29. Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr 44:864–877CrossRefGoogle Scholar
  30. Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556CrossRefGoogle Scholar
  31. Freitas EC, Rocha O (2006) The life cycle of Pseudosida ramosa, Daday 1904, an endemic neotropical cladoceran. Acta Limnol Bras 18(34):293–303Google Scholar
  32. Freitas EC, Rocha O (2011) Acute toxicity tests with the tropical cladoceran Pseudosida ramosa: the importance of using native species as test organisms. Arch Environ Contam Toxicol 60:241–249CrossRefGoogle Scholar
  33. Gama-Flores JL, Sarma SSS, Nandini S (2007) Exposure time-dependent cadmium toxicity to Moina macrocopa (Cladocera): a life table demographic study. Aquat Ecol 41:639–648CrossRefGoogle Scholar
  34. García GG, Nandini S, Sarma SSS (2004) Effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). B Environ Contam Toxicol 72:717–724CrossRefGoogle Scholar
  35. Gilliom RJ, Barbash JE, Crawford CG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2006) The quality of our nation’s waters. Pesticides in the nation’s streams and ground water, 1992–2001. US Geological Survey, Reston, VirginiaGoogle Scholar
  36. Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine on aquatic ecosystems. Environ Int 26:483–495CrossRefGoogle Scholar
  37. Gulley DD, Boetter AM, Bergman HL (1991) TOXSTAT Release 3.3. Laramie, University of Wyoming, p 19Google Scholar
  38. Hamilton MA, Russo RC, Thurfton RB (1977) Trimmed Spearman–Karber method for estimating median lethal concentration in toxicity bioassays. Environ Sci Technol 11(7):714–719CrossRefGoogle Scholar
  39. Hartman NK, Martin DB (1985) Effects of four agricultural pesticides on Daphnia pulex, Lemma minor and Potamogeton pectinatus. B Environ Contam Toxicol 5:646–651CrossRefGoogle Scholar
  40. Héquet V, Gonzalez C, Le Cloirec P (2001) Photochemical processes for atrazine degradation: methodological approach. Water Res 35(18):4253–4260CrossRefGoogle Scholar
  41. Huber W (1993) Ecotoxicological relevance of atrazine in aquatic systems. Environ Toxicol Chem 12:1865–1881CrossRefGoogle Scholar
  42. Kaushik NK, Solomon KR, Stephenson G, Day K (1985) Assessment of sublethal effects of atrazine on zooplankton. Can Tech Rep Fish Aquat Sci 1368:377–379Google Scholar
  43. Korovchinsky NM (1992) Sididae and Holopedidae: guides to the identification of microinvertebrates of the continental waters of the world. SPB Academic Publishing, The HagueGoogle Scholar
  44. Korovchinsky NM (2006) The Cladocera (Crustacea: Branchiopoda) as a relict group. Zool J Linn Soc Lond 147:109–124CrossRefGoogle Scholar
  45. Lakshminarayama JSS, O’Neill HJ, Jonnavithula SD, Leger DA, Milbum PH (1992) Impact of atrazine-bearing agricultural tile drainage discharge on planktonic drift of a natural stream. Environ Pollut 76:201–210CrossRefGoogle Scholar
  46. Lansac-Tôha FA, Bonecker CC, Velho LFM, Simões NR, Dias JD, Alves GM, Takahashi EM (2009) Biodiversity of zooplankton communities in the upper Paraná River floodplain: inter-annual variation from long-term studies. Braz J Biol 69(2):539–549CrossRefGoogle Scholar
  47. Lilius H, Hastbacka T, Isomaa B (1995) A comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environ Toxicol Chem 14:2085–2088Google Scholar
  48. Macek KJ, Burton KS, Sauter S, Gnilka S, Dean JW (1976) Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. EPA-600/3-76-047. U.S. EPA, Washington, DCGoogle Scholar
  49. Maiphae S, Pholpunthin P, Dumont HJ (2005) Species richness of the cladocera (Branchiopoda: Anomopoda and Ctenopoda) in southern Thailand, and its complementarity with neighboring regions. Hydrobiologia 537:147–156CrossRefGoogle Scholar
  50. Mayasich JM, Karlander EP, Terlizzi DE Jr (1986) Growth responses of Nannochloris oculata droop and Phaeodactylum tricornutum bohlin to the herbicide atrazine as influenced by light intensity and temperature. Aquat Toxicol 8:175–184CrossRefGoogle Scholar
  51. Meakins NC, Bubb JM, Lester JN (1994) The behaviour of the s-triazine herbicides, atrazine and simazine, during primary and secondary biological wastewater treatment. Chemosphere 28:1611–1622CrossRefGoogle Scholar
  52. Ministry of Health–Brazil (2004) Decree no. 518–Estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, e dá outras providênciasGoogle Scholar
  53. Mitchell SE, Halves J, Lampert W (2004) Coexistence of similar genotypes of Daphnia magna in intermittent populations: response to thermal stress. Oikos 106(3):469–478CrossRefGoogle Scholar
  54. Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31:597–638CrossRefGoogle Scholar
  55. Morrone JJ, Coscarón S (1998) Biodiversidad de artrópodos argentinos: una perspectiva biotaxonómica. Ediciones SUR, La PlataGoogle Scholar
  56. Müller H (1972) Wachstum and phosphatbedarf von Nitzschia actinastroides (Lemn.) v. Goor in statischer und homokontiuierliecher kultur unter phosphatlimitierung. Arch Hydrobiol Suppl 38:399–484Google Scholar
  57. Neves IF, Rocha O, Roche KF, Pinto AA (2003) Zooplankton community structure of two marginal lakes of the river Cuiabá (Mato Grosso, Brazil) with analysis of rotifera and cladocera diversity. Braz J Biol 63(2):329–343CrossRefGoogle Scholar
  58. OECD–Organization for Economic Cooperation and Development (2004) Guideline for testing of chemicals. Daphnia sp., acute immobilisation test. OECD 202, ParisGoogle Scholar
  59. OECD–Organization for Economic Cooperation and Development (2008) Guidelines for testing of chemicals. Daphnia magna reproduction test. OECD 211, ParisGoogle Scholar
  60. Oliveira-Neto AL (2000) Toxicidade de alguns metais pesados (Cd, Cr, Pb) em organismos planctônicos lacustres de região subtropical. Ph.D. thesis. University of São Paulo, São Carlos, BrazilGoogle Scholar
  61. Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009) Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74:676–681CrossRefGoogle Scholar
  62. Panouillères M, Boillot C, Perrodin Y (2007) Study of the combined effects of a peracetic acid-based disinfectant and surfactants contained in hospital effluents on Daphnia magna. Ecotoxicology 16:327–340CrossRefGoogle Scholar
  63. Phyu YL, Warne MStJ, Lim RP (2004) Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability. Arch Environ Contam Toxicol 46:308–315CrossRefGoogle Scholar
  64. Radix P, Léonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, Thiébaud H, Vasseur P (1999) Comparison of Brachionus calyciflorus 2-d and Microtoxt chronic 22-h tests with Daphnia magna 21-d test for the chronic toxicity assessment of chemicals. Environ Toxicol Chem 18(10):2178–2185Google Scholar
  65. Rey J, Vasquez E (1986) Cladocères de quelques corps d’eaux du bassin moyen de l’Orénoque (Venezuela). Ann Limnol 22(2):137–168CrossRefGoogle Scholar
  66. Roa EZ, Vasquez W (1991) Additional cladoceran records for Mantecal and new for Venezuela. Hydrobiologia 225:45–62CrossRefGoogle Scholar
  67. Rocha O, Güntzel A (1999) Branchiopoda, cladocera. In: Ismael D, Valenti WC, Matsumura-Tundisi T, Rocha O (eds) Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX. Fapesp, São Paulo, pp 107–120Google Scholar
  68. Romanelli MF, Moraes MCF, Villavicencio ALCH, Borrely SI (2004) Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation. Radiat Phys Chem 71:409–411CrossRefGoogle Scholar
  69. Sanderson JT, Seinen W, Giesy JP, Van den Berg M (2000) 2-chloro-S-triazine herbicides induce aromatase (CYP-19) activity in H295R human adrenocortical carcinoma cells: a novel mechanism for estrogenicity. Toxicol Sci 54:121–127CrossRefGoogle Scholar
  70. Sanoamuang LO (1998) Contributions to the knowledge of the cladocera of northeast Thailand. Hydrobiologia 362(1–3):45–53Google Scholar
  71. Shchernban EP (1972) Effects of low concentrations of pesticides on the development of some cladocera and the abundance of their progeny. Hydrobiol J 6:85–89Google Scholar
  72. Sibly RM (1999) Efficient experimental designs for studying stress and population density in animal populations. Ecol Appl 9:496–503CrossRefGoogle Scholar
  73. Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, LaPoint TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall LW Jr, Williams WM (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76CrossRefGoogle Scholar
  74. Stewart AJ, Konetsky BK (1998) Longevity and reproduction of Ceriodaphnia dubia in receiving waters. Environ Toxicol Chem 17:1165–1171Google Scholar
  75. Trayler KM, Davis JA (1996) Sensitivity of Daphnia carinata sensu lato to the insect growth regulator, pyriproxyfen. Ecotoxicol Environ Saf 33(2):154–156CrossRefGoogle Scholar
  76. U.S. EPA–U.S. Environmental Protection Agency (1993) Methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 3rd ed. Washington, DCGoogle Scholar
  77. U.S. EPA–U.S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Washington, DCGoogle Scholar
  78. Wightwick A, Allinson G (2007) Pesticide residues in Victorian waterways: a review. Australas J Ecotoxicol 3:91–112Google Scholar
  79. Winner RW, Farrell M (1976) Acute and chronic toxicity of copper to four species of Daphnia. J Fish Res Board Can 33:1685–1691CrossRefGoogle Scholar
  80. Ying GG (2006) Fate, behaviour and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431CrossRefGoogle Scholar
  81. Zar JH (1996) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Post-Graduate Program of Ecology and Natural Resources, Department of Ecology and Evolutionary BiologyFederal University of São CarlosSão CarlosBrazil
  2. 2.Department of Ecology and Evolutionary BiologyFederal University of São CarlosSão CarlosBrazil

Personalised recommendations