, Volume 21, Issue 3, pp 906–918 | Cite as

Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects

  • Moises João Zotti
  • Olivier Christiaens
  • Pierre Rougé
  • Anderson Dionei Grutzmacher
  • Paulo Dejalma Zimmer
  • Guy Smagghe


In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.


Ecdysone receptor Homology modeling Dibenzoylhydrazine Chrysoperla Beneficial insects Molecular docking 



Appreciations are expressed to the Funding Agency from the Brazilian Ministry of Education (CAPES) and to the National Council of Scientific and Technological Development (CNPq) for supporting a PhD grant to M.J. Zotti. This project is also supported by the Special Research Fund of Ghent University and the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium) to G. Smagghe.


  1. Albuquerque GS, Tauber CA, Tauber MJ (1994) Chrysoperla externa (Neuroptera: Chrysopidae): life history and potential for biological control in Central and South America. Biol Control 4:8–13CrossRefGoogle Scholar
  2. Billas IML, Iwema T, Garnier JM, Mitschler A, Rochel N, Moras D (2003) Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426:91–96CrossRefGoogle Scholar
  3. Billas IML, Browning C, Lawrence MC, Graham LD, Moras D, Hill R (2009) The structure and function of ecdysone receptor. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Berlin, pp 335–360CrossRefGoogle Scholar
  4. Bonneton F, Zelus D, Iwema T, Robinson-Rechavi M, Laudet V (2003) Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between EcR and USP-RXR. Mol Biol Evol 20:541–553CrossRefGoogle Scholar
  5. Bonneton F, Brunet FG, Kathirithamby J, Laudet V (2006) The rapid divergence of the ecdysone receptor is a synapomorphy for Mecopterida that clarifies the Strepsiptera problem. Insect Mol Biol 15:351–362CrossRefGoogle Scholar
  6. Bonneton F, Chaumot A, Laudet V (2008) Annotation of Tribolium castaneum receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. Insect Biochem Mol Biol 38:416–429CrossRefGoogle Scholar
  7. Carmichael JA, Lawrence MC, Graham LD, Pilling PA, Epa VC, Noyce L, Lovrecz G, Winkler DA, Pawlak-Skrzecz A, Eaton RE, Hannan GN, Hill RJ (2005) The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain. J Biol Chem 280:22258–22269CrossRefGoogle Scholar
  8. Christiaens O, Iga M, Velardé RA, Rougé P, Smagghe G (2010) Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid. Insect Mol Biol 19:197–200CrossRefGoogle Scholar
  9. Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569CrossRefGoogle Scholar
  10. Dhadialla TS, Retnakaran A, Smagghe G (2005) Insect growth- and development-disrupting insecticides. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 6. Elsevier Press, Oxford, pp 55–116CrossRefGoogle Scholar
  11. Fahrbach SE, Smagghe G, Velardé RA (2012) Insect nuclear receptors. Annu Rev Entomol 57: doi: 10.1146/annurev-ento-120710-100607
  12. Ferreira AJ, Carvalho GA, Botton M, Mendonça LA, Corrêa ARB (2005) Selectivity of insecticides uses in apple orchards to eggs of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Cienc Rural 35:756–762CrossRefGoogle Scholar
  13. Giolo FP, Medina P, Grutzmacher AD, Viñuela E (2009) Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewing Chrysoperla carnea under laboratory conditions. Biocontrol 54:625–635CrossRefGoogle Scholar
  14. Godoy MS, Carvalho GA, Moraes JC, Cosme LV, Gousain MM, Carvalho CF, Morais AA (2004a) Selectivity of six insectides used in citrus crops on pupae and adults of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Biol Control 33:359–364Google Scholar
  15. Godoy MS, Carvalho GA, Moraes JC, Junior MG, Morais AA, Cosme LV (2004b) Selectivity of insecticides used in citrus crops to eggs and larvae of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotrop Entomol 33:639–646CrossRefGoogle Scholar
  16. Graham LD, Johnson WM, Pawlak-Skrzecz A, Eaton RE, Bliese M, Howell L, Hannan GN, Hill RJ (2007) Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem Mol Biol 37:611–626CrossRefGoogle Scholar
  17. Graham LD, Johnson WM, Tohidi-Esfahani D, Pawlak-Skrzecz A, Bliese M, Lovrecz GO, Lu L, Howell L, Hannan GN, Hill RJ (2009) Ecdysone receptors of pest insects–molecular cloning, characterisation, and a ligand binding domain-based fluorescence polarization screen. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Berlin, pp 444–474Google Scholar
  18. Iwema T, Billas IML, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D (2007) Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 26:3770–3782CrossRefGoogle Scholar
  19. Johnson PD, Besselsen DG (2002) Practical aspects of experimental design in animal research. ILAR J 43:202–206Google Scholar
  20. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:w299–w302CrossRefGoogle Scholar
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  23. Mas MT, Smith KC, Yarmush DL, Aisaka K, Fine RM (1992) Modeling the anti-CEA antibody combining site by homology and conformational search. Proteins Struct Funct Genet 14:483–498CrossRefGoogle Scholar
  24. Medina P, Budia F, Tirry L, Smagghe G, Viñuela E (2001) Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Bio Sci Technol 11:597–610CrossRefGoogle Scholar
  25. Medina P, Smagghe G, Budia F, del Estal P, Tirry L, Viñuela E (2002) Significance of penetration, excretion and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Arch Insect Biochem Physiol 51:91–101CrossRefGoogle Scholar
  26. Medina P, Smagghe G, Budia F, Tirry L, Viñuela E (2003) Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Environ Entomol 32:196–203CrossRefGoogle Scholar
  27. Mommaerts V, Sterk G, Smagghe G (2006) Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists. Ecotoxicology 15:513–521CrossRefGoogle Scholar
  28. Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and functions. Curr Opin Cell Biol 10:384–391CrossRefGoogle Scholar
  29. Nakagawa Y (2005) Nonsteroidal ecdysone agonists. Vitam Horm 73:131–173CrossRefGoogle Scholar
  30. Nakagawa Y, Henrich V (2009) Arthropods nuclear receptors and their role in molting. FEBS J 276:6128–6157CrossRefGoogle Scholar
  31. Ponder JW, Richards FM (1987) Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 193:775–791CrossRefGoogle Scholar
  32. Retnakaran A, Krell P, Feng Q, Arif B (2003) Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Arch Insect Biochem Physiol 54:187–199CrossRefGoogle Scholar
  33. Rimoldi F, Schneider MI, Ronco AE (2008) Susceptibility of Chrysoperla externa eggs (Neuroptera: Chrisopidae) to conventional and biorational insecticides. Environ Entomol 37:1252–1257CrossRefGoogle Scholar
  34. Risler JL, Delorme MO, Delacroix H, Henaut A (1998) Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new an efficient scoring matrix. J Mol Biol 204:1019–1029CrossRefGoogle Scholar
  35. Senior LJ, McEwen PK (2001) The use of lacewings in biological control. In: McEwan PK, New TR, Whittington AE (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 296–302CrossRefGoogle Scholar
  36. Smagghe G, Degheele D (1993) Metabolism, pharmacokinetics and toxicity of the first nonsteroidal ecdysteroid agonist RH-5849 on Spodoptera exempta (Walker), Spodoptera exigua (Hübner), and Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 46:149–160CrossRefGoogle Scholar
  37. Smagghe G, Degheele D (1994) Action of the nonsteroidal ecdysteroid mimic, RH-5992 on insects of different orders. Pestic Sci 42:85–92CrossRefGoogle Scholar
  38. Soin T, Iga M, Swevers L, Rougé P, Janssen CR, Smagghe G (2009) Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket. Insect Biochem Mol Biol 39:523–534CrossRefGoogle Scholar
  39. Soin T, Swevers L, Kotzia G, Iatrou K, Janssen CR, Rougé P, Harada T, Nakagawa Y, Smagghe G (2010) Comparison of the activity of non-steroidal ecdysone agonists between dipteran and lepidopteran insects, using cell-based EcR reporter assays. Pest Manag Sci 66:1215–1229CrossRefGoogle Scholar
  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 15:4876–4882CrossRefGoogle Scholar
  42. Vogt H (1994) Effects of pesticides on Chrysoperla carnea Steph. (Neuroptera: Chrysopidae) in the field and comparison with laboratory and semi-field results. IOBC/WPRS Bull 17:71–82Google Scholar
  43. Wing KD, Slawecki RA, Carlson GR (1988) RH-5849, a nonsteroidal ecdysone agonist: effects on larval Lepidoptera. Science 241:470–472CrossRefGoogle Scholar
  44. Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P, Evans RM (1993) Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 366:476–479CrossRefGoogle Scholar
  45. Yong L, Lambert MH, Xu HE (2003) Activation of nuclear receptors: a perspective from structural genomics. Structure 11:714–746Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Moises João Zotti
    • 1
    • 2
  • Olivier Christiaens
    • 1
  • Pierre Rougé
    • 4
  • Anderson Dionei Grutzmacher
    • 2
  • Paulo Dejalma Zimmer
    • 3
  • Guy Smagghe
    • 1
  1. 1.Laboratory of Agrozoology, Department of Crop ProtectionGhent UniversityGhentBelgium
  2. 2.Faculty of Agronomy “Eliseu Maciel” (FAEM), Department Fitossanitary, Laboratory of Selectivity of Pesticides On Natural EnemiesFederal University of Pelotas (UFPel)PelotasBrazil
  3. 3.Faculty of Agronomy “Eliseu Maciel” (FAEM), Laboratory of Molecular Biology and BiotechnologyFederal University of Pelotas (UFPel)PelotasBrazil
  4. 4.UMR UPS-IRD 152 Pharma-Dev, Faculté de PharmacieUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations