, Volume 21, Issue 1, pp 253–259 | Cite as

Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish

  • Xiao-Yu Li
  • Shi-Hu Zeng
  • Xiang-Yi Dong
  • Jun-Guo Ma
  • Jian-Ji Wang


Acute toxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) to goldfish at different developmental stages and responses of the antioxidant system in adult goldfish were evaluated in the present study. The results indicate that post-embryonic developmental toxicity of [C8mim]Br on goldfish is developmental-stage dependent. The juvenile and larva goldfish are more sensitive to [C8mim]Br-toxicity than the adult fish. Histological observations in adult goldfish reveal that acute [C8mim]Br exposure damages the hepatopancreas, intestines, and kidneys, indicating that these are possible target organs of [C8mim]Br toxicity in goldfish. Subsequent biochemical assays in adult goldfish show that [C8mim]Br also induces changes in the activities of the superoxide dismutase, catalase, glutathione peroxidase, and glutathione content of fish hepatopancreas. These results suggest that [C8mim]Br exposure may induce oxidant stress and lipid peroxidation in hepatopancreas of adult goldfish. In addition, we also find that [C8mim]Br causes a remarkable increase in malondialdehyde (MDA) levels in the hepatopancreas of adult goldfish, and thus we think that the MDA level change can be a biomarker of [C8mim]Br toxicity in goldfish. The present study indicates that ionic liquids can be a threat to the survival, growth, and development of the fish population once they are accidentally leaked into aquatic ecosystems.


1-Methyl-3-octylimidazolium bromide Carassius auratus Developmental stage Toxicity Antioxidant system 



This research was supported by the National Science Foundation of China (Grant No. 20573019, 20573034), the Henan Scientific and Technological Innovation Project for University Prominent Young Research Talents (094100510012), the Research Project of the Ministry of Education of China ([2006]331) and the Key Subject of Fishery in Henan Province, China.


  1. Barata C, Varo I, Navarro JC et al (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol Part C140:175–186Google Scholar
  2. Bernot RJ, Brueseke MA, Evans-White MA et al (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92CrossRefGoogle Scholar
  3. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384–2389CrossRefGoogle Scholar
  4. Cho CW, Jeon YC, Pham TPT et al (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171CrossRefGoogle Scholar
  5. Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem 11:548–553CrossRefGoogle Scholar
  6. Couling DJ, Bernot RJ, Docherty KM et al (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90CrossRefGoogle Scholar
  7. Czerwicka M, Müller AS, Siedleck EM et al (2009) Identification of ionic liquid breakdown products in an advanced oxidation system. J Hazard Mater 171:478–483CrossRefGoogle Scholar
  8. Eaton DL, Klaassen CD (2001) Principles of toxicology. In: Klaassen CD (ed) Casarett & Doull’s toxicology: The basic science of poisons. McGraw Hill Press, New york, pp 11–32Google Scholar
  9. Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids: part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160CrossRefGoogle Scholar
  10. Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222:101–117CrossRefGoogle Scholar
  11. Hough WL, Smiglak M, Rodríguez H et al (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436CrossRefGoogle Scholar
  12. Jungnickel C, Luczak J, Ranke J et al (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Coll Surf A Physicochem Eng Aspects 316:278–284CrossRefGoogle Scholar
  13. Kärber G (1931) Beitrag zur kollektiven behandlung pharmakologischer reihenversuche. Arch Exp Pathol Pharmakol 162:480–482CrossRefGoogle Scholar
  14. Latała A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371–1376CrossRefGoogle Scholar
  15. Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64CrossRefGoogle Scholar
  16. Li P (1959) Embryonic developmental stage determination of goldfish and crucia carp. Acta Zool Sinica 11:145–154 in ChineseGoogle Scholar
  17. Livingstone DR (2001) Contaminant reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666CrossRefGoogle Scholar
  18. Lowry OH, Rosebrough NJ, Farr NJ et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 93:265–275Google Scholar
  19. Luo YR, Li XY, Chen XX et al (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744CrossRefGoogle Scholar
  20. Morales AE, Pérez-Jiménez A, Hidalgo MC (2004) Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol Part C 139:153–161Google Scholar
  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  22. Papadimitriou E, Loumbourdis NS (2002) Exposure of the frog Rana nidibunda to copper impact on two biomarkers, lipid peroxidation and glutathione. Bull Environ Contam Toxicol 69:885–889CrossRefGoogle Scholar
  23. Petkovic M, Ferguson JL, Nimal Gunaratne HQ et al (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643–649CrossRefGoogle Scholar
  24. Pretti C, Chiappe C, Pieraccini D et al (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240CrossRefGoogle Scholar
  25. Pretti C, Chiappe C, Baldetti I et al (2009) Acute toxicity of ionic liquids for three fresh water organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Safe 72:1170–1176CrossRefGoogle Scholar
  26. Ranke J, Stolte S, Störmann R (2007) Design of sustainable chemical products—The example of ionic liquids. Chem Rev 107:2183–2206CrossRefGoogle Scholar
  27. Rantwijk F, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRefGoogle Scholar
  28. Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225CrossRefGoogle Scholar
  29. Romero A, Santos A, Tojo J et al (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazardous Mater 151:268–273CrossRefGoogle Scholar
  30. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278CrossRefGoogle Scholar
  31. Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372CrossRefGoogle Scholar
  32. Twyman RM (2001) Instant notes in developmental biology. In: Twyman RM (ed) BIOS scientific publishers limited, pp 1–45Google Scholar
  33. Ventura SPM, Goncalves AMM, Goncalves F (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquatic Toxicol 96:290–297CrossRefGoogle Scholar
  34. Wang SH, Huang PP, Li XY et al (2010) Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environ Toxicol 25:243–250CrossRefGoogle Scholar
  35. Weyershausen B, Lehmann K (2004) Industrial application of ionic liquids as performance additives. Green Chem 7:15–19CrossRefGoogle Scholar
  36. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80CrossRefGoogle Scholar
  37. Yang JZ, Lu XM, Gui JS et al (2004) A new theory for ionic liquids—the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543CrossRefGoogle Scholar
  38. Yu M, Li S, Li X et al (2008) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Safe 71:903–908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Life ScienceHenan Normal UniversityXinxiangChina
  2. 2.Henan Key Laboratory for Environmental Pollution ControlXinxiangChina

Personalised recommendations