Advertisement

Ecotoxicology

, Volume 20, Issue 4, pp 739–759 | Cite as

Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area

  • Clémentine Fritsch
  • Michaël Coeurdassier
  • Frédéric Gimbert
  • Nadia Crini
  • Renaud Scheifler
  • Annette de Vaufleury
Article

Abstract

A cross-transplantation field experiment was performed to investigate about possible adaptation/acclimatization to metal pollution in common garden snail Cantareus aspersus (ex-Helix aspersa) and brown-lipped grove snail Cepaea nemoralis populations. Adults were collected from an area surrounding a former smelter (ME), highly polluted by trace metals (TMs) for decades, and from an unpolluted site (BE). Subadults of first generation (F1) were exposed in microcosms in a 28-day kinetic study. Four exposure sites were chosen around the smelter along a soil pollution gradient (vegetation and soil otherwise comparable). Bioaccumulation in snail soft tissues globally increased with soil contamination, with Cd, Pb and Zn concentrations reaching 271, 187, 5527 μg g−1, respectively. Accumulation kinetic patterns were similar between snail species but C. nemoralis showed greater TM levels than C. aspersus. Some inter-population differences were revealed in TM accumulation (bioaccumulation factors, accumulation kinetics) but did not suggest consistent adaptive responses. We did not detect negative effects of TM exposure on snail condition (body weight, shell size, shell weight). ME C. aspersus snails produced heavier shells than BE snails under exposure to TMs at the highest level, suggesting an adaptive response. The protocol used in this study, however, did not allow unambiguously distinguishing whether this response was due to genetic adaptation or to maternal effects. Abnormal but reversible shell development of adult ME C. nemoralis suggested physiological acclimatization. Differences in responses to TMs between populations are observed for conchological parameters, not for bioaccumulation, with different strategies according to the species (acclimatization or adaptation/maternal effects).

Keywords

Acclimation Adaptive response Tolerance Invertebrate Metal stress 

Notes

Acknowledgments

We gratefully thank Cécile Grand from the Agence De l’Environnement et de la Maîtrise de l’Energie (ADEME) for many fruitful scientific discussions. We also warmly thank Elie Dhivert, Willy Gerbaud, Jean-Claude Lambert, Dominique Rieffel and Nicolas Tête for their technical assistance, and Peter Winterton for the review of the English language. The STARTT programme was financially supported by the Agence Nationale de la Recherche (ANR, contract n°ANR-05-ECCO-004) and the ADEME (contract n°0572C0058). Clémentine Fritsch was financially supported by a grant from the ADEME and the Conseil Régional de Franche-Comté. The authors are indebted to two anonymous Reviewers for improving the manuscript.

Supplementary material

10646_2011_619_MOESM1_ESM.tif (125 kb)
Supplementary material 1 (TIFF 124 kb)
10646_2011_619_MOESM2_ESM.tif (284 kb)
Supplementary material 2 (TIFF 283 kb)

References

  1. AFNOR (1996) Qualité des sols—Méthodes chimiques—sols sédiments, mise en solution totale par attaque acide—NF X31–147. Association Française de Normalisation, ParisGoogle Scholar
  2. AFNOR (1999) Qualité des sols—Méthodes chimiques—Détermination de la capacité d’échange cationique (CEC) et des cations extractibles—NF X31–130. Association Française de Normalisation, ParisGoogle Scholar
  3. AFNOR (2003) Qualité des sols—determination de la distribution granulométrique des particules du sol - Méthode à la pipette—NF X31–107. Association Française de Normalisation, ParisGoogle Scholar
  4. Arnaud JF, Madec L, Guiller A, Bellido A (2001) Spatial analysis of allozyme and microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda : Helicidae). Mol Ecol 10:1563–1576. doi: 10.1046/j.1365-294X.2001.01292.x CrossRefGoogle Scholar
  5. Baur A, Baur B (1993) Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35:89–98Google Scholar
  6. Beeby A (1993) The interaction of Pb and Ca assimilation in Helix aspersa with wounded shells. Pol J Environ Stud 2:9–13Google Scholar
  7. Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298. doi: 10.1016/S0269-7491(00)00038-5 CrossRefGoogle Scholar
  8. Beeby A, Richmond L (1988) Calcium metabolism in two populations of the snail Helix aspersa on a high-lead diet. Arch Environ Contam Toxicol 17:507–511. doi: 10.1007/BF01055516 CrossRefGoogle Scholar
  9. Beeby A, Richmond L (1998) Variation in the mineral composition of eggs of the snail, Helix aspersa between populations exposed to different levels of metal contamination. Environ Pollut 101:25–31. doi: 10.1016/S0269-7491(98)00040-2 CrossRefGoogle Scholar
  10. Beeby A, Richmond L (2001a) Intraspecific competition in populations of Helix aspersa with different histories of exposure to lead. Environ Pollut 114:337–344. doi: 10.1016/S0269-7491(00)00241-4 CrossRefGoogle Scholar
  11. Beeby A, Richmond L (2001b) Calcium provision to eggs in two populations of Helix aspersa by parents fed a diet high in lead. J Mollusc Stud 67:1–6. doi: 10.1093/mollus/67.1.1 CrossRefGoogle Scholar
  12. Beeby A, Richmond L (2002) Evaluating Helix aspersa as a sentinel for mapping metal pollution. Ecol Indicators 1:261–270. doi: 10.1016/S1470-160X(02)00022-5 CrossRefGoogle Scholar
  13. Beeby A, Richmond L (2003) Do the soft tissues of Helix aspersa serve as a quantitative sentinel of predicted free lead concentrations in soils? Appl Soil Ecol 22:159–165. doi: 10.1016/S0929-1393(02)00130-0 CrossRefGoogle Scholar
  14. Beeby A, Richmond L (2010) Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus. Environ Pollut (in press) Corrected proof doi: 10.1016/j.envpol.2010.02.002
  15. Beeby A, Richmond L, Herpe F (2002) Lead reduces shell mass in juvenile garden snails (Helix aspersa). Environ Pollut 120:283–288. doi: 10.1016/S0269-7491(02)00151-3 CrossRefGoogle Scholar
  16. Belfiore NM, Anderson SL (1998) Genetic patterns as a tool for monitoring and assessment of environmental impacts: The example of genetic ecotoxicology. Environ Monit Assess 51:465–479. doi: 10.1023/A:1005971132502 CrossRefGoogle Scholar
  17. Berger B, Dallinger R (1993) Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess 25:65–84. doi: 10.1007/BF00549793 CrossRefGoogle Scholar
  18. Bonneris E, Giguere A, Perceval O, Buronfosse T, Masson S, Hare L, Campbell PGC (2005) Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: role of calcium concretions in metal sequestration. Aquat Toxicol 71:319–334. doi: 10.1016/j.aquatox.2004.11.025 CrossRefGoogle Scholar
  19. Brown BE (1982) The form and function of metal-containing granules in invertebrate tissues. Biol Rev Camb Philos Soc 57:621–667. doi: 10.1111/j.1469-185X.1982.tb00375.x CrossRefGoogle Scholar
  20. Cameron RAD, Williamson P (1977) Estimating migration and effects of disturbance in mark-recapture studies on snail Cepaea nemoralis L. J Anim Ecol 46:173–179CrossRefGoogle Scholar
  21. Chevalier L, Desbuquois C, Le Lannic J, Charrier M (2001) Poaceae in the natural diet of the snail Helix aspersa Müller (Gasteropoda, Pulmonata). Compte Rendu de l’Académie des Sciences. Paris 324:979–987Google Scholar
  22. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. doi: 10.1016/j.biochi.2006.07.003 CrossRefGoogle Scholar
  23. Coeurdassier M, Gomot-de Vaufleury A, Lovy C, Badot P-M (2002) Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails. Ecotoxicol Environ Saf 53:425–431. doi: 10.1016/S0147-6513(02)00004-0 CrossRefGoogle Scholar
  24. Crawley MJ (2007) The R book. John Wiley & Sons, Ltd, ChichesterCrossRefGoogle Scholar
  25. Dallinger R, Rainbow PS (1993) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca ratonGoogle Scholar
  26. Dallinger R, Lagg B, Egg M, Schipflinger R, Chabicovsky M (2004) Cd accumulation and Cd-metallothionein as a biomarker in Cepaea hortensis (Helicidae, Pulmonata) from laboratory exposure and metal-polluted habitats. Ecotoxicology 13:757–772. doi: 10.1007/s10646-003-4474-4 CrossRefGoogle Scholar
  27. de Vaufleury A, Coeurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot P-M (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806. doi: 10.1897/04-560R.1 CrossRefGoogle Scholar
  28. Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260. doi: 10.1007/s11270-007-9541-7 CrossRefGoogle Scholar
  29. Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, de Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577. doi: 10.1016/j.scitotenv.2009.06.015 CrossRefGoogle Scholar
  30. Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227. doi: 10.1016/j.ecoenv.2007.03.015 CrossRefGoogle Scholar
  31. Fritsch C, Scheifler R, Beaugelin-Seiller K, Hubert P, Coeurdassier M, de Vaufleury A, Badot P-M (2008) Biotic interactions modify the transfer of cesium-137 in a soil-earthworm-plant-snail food web. Environ Toxicol Chem 27:1698–1707. doi: 10.1897/07-416.1 CrossRefGoogle Scholar
  32. Fritsch C, Cosson RP, Coeurdassier M, Raoul F, Giraudoux P, Crini N, de Vaufleury A, Scheifler R (2010a) Responses of wild small mammals to a pollution gradient: host factors influence metal and metallothionein levels. Environ Pollut 158:827–840. doi: 10.1016/j.envpol.2009.09.027 CrossRefGoogle Scholar
  33. Fritsch C, Giraudoux P, Coeurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, Vaufleury Ad, Scheifler R (2010b) Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155. doi: 10.1016/j.chemosphere.2010.06.075 CrossRefGoogle Scholar
  34. Gimbert F (2006) Cinétiques de transfert de polluants métalliques du sol à l’escargots. Dissertation, University of Franche-ComtéGoogle Scholar
  35. Gimbert F, de Vaufleury A, Douay F, Scheifler R, Coeurdassier M, Badot P-M (2006) Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa. Environ Int 32:866–875. doi: 10.1016/j.envint.2006.05.006 CrossRefGoogle Scholar
  36. Gimbert F, de Vaufleury A, Douay F, Coeurdassier M, Scheifler R, Badot P-M (2008a) Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicol Environ Saf 70:138–146. doi: 10.1016/j.ecoenv.2007.05.014 CrossRefGoogle Scholar
  37. Gimbert F, Mench M, Coeurdassier M, Badot P-M, de Vaufleury A (2008b) Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field. Environ Pollut 152:736–745. doi: 10.1016/j.envpol.2007.06.044 CrossRefGoogle Scholar
  38. Gimbert F, Vijver MG, Coeurdassier M, Scheifler R, Peijnenburg WJGM, Badot PM, de Vaufleury A (2008c) How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environ Toxicol Chem 27:1284–1292. doi: 10.1897/07-503.1 CrossRefGoogle Scholar
  39. Gomot A (1997) Dose-dependent effects of cadmium on the growth of snails in toxicity bioassays. Arch Environ Contam Toxicol 33:209–216. doi: 10.1007/s002449900245 CrossRefGoogle Scholar
  40. Gomot A, Pihan F (1997) Comparison of the bioaccumulation capacities of copper and zinc in two snail subspecies (Helix). Ecotoxicol Environ Saf 38:85–94. doi: 10.1006/eesa.1997.1566 CrossRefGoogle Scholar
  41. Gomot A, Gomot L, Boukraa S, Bruckert S (1989) Influence of soil on the growth of the land snail Helix aspersa. An experimental study of the absorption route for the stimulating factors. J Mollusc Stud 55:1–7. doi: 10.1093/mollus/55.1.1-a CrossRefGoogle Scholar
  42. Gomot-de Vaufleury A (2000) Standardized growth toxicity testing (Cu, Zn, Pb, and Pentachlorophenol) with Helix aspersa. Ecotoxicol Environ Saf 46:41–50. doi: 10.1006/eesa.1999.1872 CrossRefGoogle Scholar
  43. Gomot-de Vaufleury A, Bispo A (2000) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. 1. Sublethal effects on growth. Environ Sci Technol 34:1865–1870. doi: 10.1021/es9907212 CrossRefGoogle Scholar
  44. Gomot-de Vaufleury A, Pihan F (2000) Growing snails used as sentinels to evaluate terrestrial environment contamination by trace elements. Chemosphere 40:275–284. doi: 10.1016/S0045-6535(99)00246-5 CrossRefGoogle Scholar
  45. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428. doi: 10.2134/jeq2006.0492 CrossRefGoogle Scholar
  46. Hendrickx F, Maelfait J-P, Bogaert N, Tojal C, Du Laing G, Tack FMG, Verloo MG (2004) The importance of biological factors affecting trace metal concentration as revealed from accumulation patterns in co-occurring terrestrial invertebrates. Environ Pollut 127:335–341. doi: 10.1016/j.envpol.2003.09.001 CrossRefGoogle Scholar
  47. Hispard F, Schuler D, de Vaufleury A, Scheifler R, Badot PM, Dallinger R (2008) Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (gastropoda, pulmonata). Environ Toxicol Chem 27:1533–1542. doi: 10.1897/07-232.1 CrossRefGoogle Scholar
  48. Hobbelen PHF, Koolhaas JE, van Gestel CAM (2006) Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ Pollut 144:639–646. doi: 10.1016/j.envpol.2006.01.019 CrossRefGoogle Scholar
  49. ISO (1994) Soil quality—Determination of pH—ISO 10390:1994. International Organization for Standardization, GenevaGoogle Scholar
  50. ISO (1995a) Soil quality—Determination of carbonate content. Volumetric method—ISO 10693:1995. International Organization for Standardization, GenevaGoogle Scholar
  51. ISO (1995b) Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis)—ISO 10694:1995. International Organization for Standardization, GenevaGoogle Scholar
  52. ISO (2006) Soil quality—Effects of pollutants on juvenile land snails (Helicidae). Determination of the effects on growth by soil contamination—ISO 15952:2006. International Organization for Standardization, GenevaGoogle Scholar
  53. ISO (2008) Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO 17402:2008. International Organization for Standardization, GenevaGoogle Scholar
  54. Jordaens K, De Wolf H, Van Houtte N, Vandecasteele B, Backeljau T (2006a) Genetic variation in two land snails, Cepaea nemoralis and Succinea putris (Gastropoda, Pulmonata), from sites differing in heavy metal content. Genetica 128:227–239. doi: 10.1007/s10709-005-5705-9 CrossRefGoogle Scholar
  55. Jordaens K, De Wolf H, Vandecasteele B, Blust R, Backeljau T (2006b) Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidae). Sci Total Environ 363:285–293. doi: 10.1016/j.scitotenv.2005.12.002 CrossRefGoogle Scholar
  56. Kammenga J, Laskowski R (2000) Demography in ecotoxicology. Ecological an environmental toxicology Series. John Wiley & Sons, ChichesterGoogle Scholar
  57. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  58. Kleewein D (1999) Population size, density, spatial distribution and dispersal in an Austrian population of the land snail Arianta arbustorum styriaca (Gastropoda: Helicidae). J Mollusc Stud 65:303–315. doi: 10.1093/mollus/65.3.303 CrossRefGoogle Scholar
  59. Lagisz M, Laskowski R (2008) Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology 17:59–66. doi: 10.1007/s10646-007-0176-7 CrossRefGoogle Scholar
  60. Laskowski R, Hopkin SP (1996) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Saf 34:59–69. doi: 10.1006/eesa.1996.0045 CrossRefGoogle Scholar
  61. Lindstrom M, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687CrossRefGoogle Scholar
  62. Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396. doi: 10.1016/j.envexpbot.2006.12.010 CrossRefGoogle Scholar
  63. Menta C, Parisi V (2001) Metal concentrations in Helix pomatia, Helix aspersa and Arion rufus: a comparative study. Environ Pollut 115:205–208. doi: 10.1016/S0269-7491(01)00110-5 CrossRefGoogle Scholar
  64. Monteiro MS, Santos C, Soares A, Mann RM (2008) Does subcellular distribution in plants dictate the trophic bioavailability of cadmium to Porcellio dilatatus (Crustacea, Isopoda)? Environ Toxicol Chem 27:2548–2556. doi: 10.1897/08-154.1 CrossRefGoogle Scholar
  65. Morgan AJ, Kille P, Stürzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096. doi: 10.1021/es061992x CrossRefGoogle Scholar
  66. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi: 10.1016/S0169-5347(98)01472-4 CrossRefGoogle Scholar
  67. Mulvey M, Newman MC, Beeby AN (1996) Genetic and conchological comparison of snails (Helix aspersa) differing in shell deposition of lead. J Mollusc Stud 62:213–223. doi: 10.1093/mollus/62.2.213 CrossRefGoogle Scholar
  68. Nahmani J, Hodson ME, Devin S, Vijver MG (2009) Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Environ Pollut 157:2622–2628. doi: 10.1016/j.envpol.2009.05.002 CrossRefGoogle Scholar
  69. Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138:178–190. doi: 10.1016/j.envpol.2005.01.011 CrossRefGoogle Scholar
  70. Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2006) Heavy metal pollution affects consumption and reproduction of the landsnail Cepaea nemoralis fed on naturally polluted Urtica dioica leaves. Ecotoxicology 15:295–304. doi: 10.1007/s10646-006-0059-3 CrossRefGoogle Scholar
  71. Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol Environ Saf 56:63–77. doi: 10.1016/S0147-6513(03)00051-4 CrossRefGoogle Scholar
  72. Pfenninger M (2002) Relationship between microspatial population genetic structure and habitat heterogeneity in Pomatias elegans (OF Muller 1774) (Caenogastropoda, Pomatiasidae). Biol J Linn Soc 76:565–575. doi: 10.1046/j.1095-8312.2002.00080.x CrossRefGoogle Scholar
  73. Pihan F, de Vaufleury A (2000) The snail as a target organism for the evaluation of industrial waste dump contamination and the efficiency of its remediation. Ecotoxicol Environ Saf 46:137–147. doi: 10.1006/eesa.1999.1891 CrossRefGoogle Scholar
  74. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New YorkCrossRefGoogle Scholar
  75. Posthuma L, van Straalen NM (1993) Heavy metal adaptation in terrestrial invertebrates—A review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol C 106:11–38. doi: 10.1016/0742-8413(93)90251-F Google Scholar
  76. Quensen JF, Woodruff DS (1997) Associations between shell morphology and land crab predation in the land snail Cerion. Funct Ecol 11:464–471. doi: 10.1046/j.1365-2435.1997.00115.x CrossRefGoogle Scholar
  77. R Development Core Team (2006) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  78. Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Perspect 114:63–69. doi: 10.1289/ehp.8397 CrossRefGoogle Scholar
  79. Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer-Verlag, New YorkGoogle Scholar
  80. Roelofs D, Janssens TKS, Timmermans MJTN, Nota B, Marien J, Bochdanovits Z, Ylstra B, Van Straalen NM (2009) Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol 18:3227–3239. doi: 10.1111/j.1365-294X.2009.04261.x CrossRefGoogle Scholar
  81. Rozen A (2006) Effect of cadmium on life-history parameters in Dendrobaena octaedra (Lumbricidae: Oligochaeta) populations originating from forests differently polluted with heavy metals. Soil Biol Biochem 38:489–503. doi: 10.1016/j.soilbio.2005.06.003 CrossRefGoogle Scholar
  82. Russell LK, de Haven JJ, Botts RP (1981) Toxic effects of cadmium on the garden snail (Helix aspersa). Bull Environ Contam Toxicol 26:634–640CrossRefGoogle Scholar
  83. Scheifler R, Ben Brahim M, Gomot-de Vaufleury A, Carnus J-M, Badot P-M (2003) A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails. Environ Pollut 122:343–350. doi: 10.1016/S0269-7491(02)00333-0 CrossRefGoogle Scholar
  84. Scheifler R, de Vaufleury A, Coeurdassier M, Crini N, Badot PM (2006) Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: A microcosm study. Environ Toxicol Chem 25:815–822. doi: 10.1897/04-675R.1 CrossRefGoogle Scholar
  85. Schilthuizen M, Van Til A, Salverda M, Liew TS, James S, Bin Elahan B, Vermeulen JJ (2006) Microgeographic evolution of snail shell shape and predator behavior. Evolution 60:1851–1858. doi: 10.1554/06-114.1 Google Scholar
  86. Schweiger O, Frenzel M, Durka W (2004) Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda : Helicidae). Mol Ecol 13:3645–3655. doi: 10.1111/j.1365-294X.2004.02357.x CrossRefGoogle Scholar
  87. Sidoumou Z, GnassiaBarelli M, Romeo M (1997) Cadmium and calcium uptake in the mollusc Donax rugosus and effect of a calcium channel blocker. Bull Environ Contam Toxicol 58:318–325. doi: 10.1007/s001289900337 CrossRefGoogle Scholar
  88. Smith R, Pollard SJT, Weeks JM, Nathanail CP (2006) Assessing harm to terrestrial ecosystems from contaminated land. Soil Use Manage 21:527–540. doi: 10.1079/SUM2005345 CrossRefGoogle Scholar
  89. Spurgeon DJ, Hopkin SP (2000) The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida. Environ Pollut 109:193–201. doi: 10.1016/S0269-7491(99)00267-5 CrossRefGoogle Scholar
  90. Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194. doi: 10.1023/A:1014758811194 CrossRefGoogle Scholar
  91. Van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406:385–395. doi: 10.1016/j.scitotenv.2008.05.050 CrossRefGoogle Scholar
  92. Veltman K, Huijbregts MAJ, Hendriks AJ (2008) Cadmium bioaccumulation factors for terrestrial species: Application of the mechanistic bioaccumulation model OMEGA to explain field data. Sci Total Environ 406:413–418. doi: 10.1016/j.scitotenv.2008.05.049 CrossRefGoogle Scholar
  93. Viard W, Pihan F, Promeyrat S, Pihan JC (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55:1349–1359. doi: 10.1016/j.chemosphere.2004.01.003 CrossRefGoogle Scholar
  94. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712. doi: 10.1021/es040354g CrossRefGoogle Scholar
  95. Williamson P (1980) Variables affecting body burdens of lead, zinc and cadmium in a roadside population of the snail Cepaea hortensis Müller. Oecologia 44:213–220. doi: 10.1007/BF00572682 CrossRefGoogle Scholar
  96. Williamson P, Cameron RAD (1976) Natural diet of landsnail Cepaea nemoralis. Oikos 27:493–500CrossRefGoogle Scholar
  97. Wood SN (2006) Generalized additive models—an introduction with R. Chapman et Hall/CRC Press - Taylor & Francis Group, Boca RatonGoogle Scholar
  98. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Clémentine Fritsch
    • 1
  • Michaël Coeurdassier
    • 1
  • Frédéric Gimbert
    • 1
  • Nadia Crini
    • 1
  • Renaud Scheifler
    • 1
  • Annette de Vaufleury
    • 1
  1. 1.Chrono-EnvironmentUMR 6249 University of Franche-Comté/CNRS Usc INRABesançon CedexFrance

Personalised recommendations