, Volume 19, Issue 7, pp 1209–1223 | Cite as

Cadmium, lead and their mixtures with copper: Paracentrotus lividus embryotoxicity assessment, prediction, and offspring quality evaluation

  • Sonia Manzo
  • Silvia Buono
  • Carlo Cremisini


The aim of this research was to assess the combined effects of three heavy metals (copper, lead, cadmium) on the fertilization and offspring quality of the sea urchin Paracentrotus lividus at EC50, NOEL, and EC1 concentrations. The observed data were compared with the predictions derived from approaches of Concentration Addition (CA) and Independent Action (IA) in order to evaluate the proper prediction of the observed mixture toxic effect. The P. lividus embryotoxicity of trace metals decreases as follows: Cu > Pb > Cd at all toxicity concentration tested. EC50 mixture revealed less toxic only than Cu; EC50 was 0.80 (±0.07) mg/l, the offspring malformations were mainly P1 type (skeletal alterations) up to 20% mixture concentration, and P2 type from 70% concentration. The NOEL and EC1 mixtures evidenced that all compounds contribute to the overall toxicity, even if present at low concentrations: the former EC50 was 0.532 (±0.058) mg/l and the latter was 1.081 (±0.240) mg/l. The developmental defects observed were mainly P1 type in both mixtures. Both CA and IA models did not accurately predict mixture toxicity for EC50 and NOEL mixtures. Instead, EC1 mixture effects seemed well represented by the IA model. The protective action of the CA model, although quite accurate when applied to simple biological systems like algae and bacteria, but failed to represent the worst-case in this study with more complex organisms. It would be useful to introduce in the models one or more factors that take into account the complexity of these biological systems.


Paracentrotus lividus Heavy metals Mixture toxicity Predictive models 


  1. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting compounds. Environ Toxicol Chem 19:2341–2347Google Scholar
  2. American Society for Testing and Materials, ASTM (2004) Standard guide for conducting static acute toxicity tests with echinoid embryos. ASTM Standard Guide E 1563–98. In: Annual Book of ASTM Standards, Section 11, vol 11.5Google Scholar
  3. Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202CrossRefGoogle Scholar
  4. Arizzi Novelli A, Argese E, Tagliapietra D, Bettiol C, Volpi Ghirardini A (2002) Toxicity of tributyltin and triphenyltin towards early life stages of Paracentrotus lividus (Echinodermata: Echinoidea). Environ Toxicol Chem 21:859–864Google Scholar
  5. Arrhenius A, Gronvall F, Scholze M, Backhaus T, Blanck H (2004) Predictability of the mixture toxicity of 12 similarly acting congeneric inhibitors of photosystem II in marine periphyton and epipsammon communities. Aquat Toxicol 68:351–367CrossRefGoogle Scholar
  6. Arrhenius A, Backhaus T, Gronvall F, Junghans M, Scholze M, Blanck H (2006) Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, irgarol, and sea-nine. Arch Environ Contam Toxicol 50:335–345CrossRefGoogle Scholar
  7. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme H (2000a) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19:2348–2356Google Scholar
  8. Backhaus T, Scholze M, Grimme LH (2000b) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61CrossRefGoogle Scholar
  9. Backhaus T, Altenburger R, Arrhenius A, Blanck H, Faust M, Finizio A, Gramatica P, Grote M, Junghans M, Meyer W, Pavan M, Porsbring T, Scholze M, Todeschini R, Vighi M, Walter H, Grimme LH (2003) The BEAM project: prediction and assessment of mixture toxicities in the aquatic environment. Cont Shelf Res 23:1757–1769CrossRefGoogle Scholar
  10. Barata C, Baird DJ, Nogueira AJA, Agra AR, Soares MVM (2007) Life-history responses of Daphnia magna Straus to binary mixtures of toxic substances: pharmacological versus ecotoxicological modes of action. Aquat Toxicol 84:439–449CrossRefGoogle Scholar
  11. Bellas J (2008) Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay. Aquat Toxicol 88:308–315CrossRefGoogle Scholar
  12. Belyaeva EA, Glazunov VV, Korotkov SM (2004) Cd2+ promoted mitochondrial permeability transition: a comparison with other heavy metals. Acta Biochim Pol 51:545–551Google Scholar
  13. Bliss CI (1939) The toxicity of poisons applied jointly. Ann J Appl Biol 26:585–615CrossRefGoogle Scholar
  14. Braek GS, Jensen A, Mohus A (1976) Heavy-metal tolerance of marine-phytoplankton 3. Combined effects of Cu and Zn ions on cultures of 4 common species. J Exp Mar Biol Ecol 25:37–50CrossRefGoogle Scholar
  15. Bressan M, Marin M, Brunetti R (1995) Influence of temperature and salinity on embryonic-development of Paracentrotus-lividus (lmk, 1816). Hydrobiologia 304:175–184CrossRefGoogle Scholar
  16. Broderius SJ, Kahl MD, Hoglund MD (1995) Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 9:1591–1605CrossRefGoogle Scholar
  17. Carr RS (1996) Sediment quality assessment studies of Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231CrossRefGoogle Scholar
  18. Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sorensen H (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 27:1621–1632CrossRefGoogle Scholar
  19. Cesar A, Marin A, Marin-Guirao L, Vita R (2004) Amphipod and sea urchin tests to assess the toxicity of Mediterranean sediments: the case of Portman Bay. Sci Mar 68:205–213CrossRefGoogle Scholar
  20. Chapple G, Byrne JP (1996) Direct determination of trace metals in seawater using ETV-ICP-MS. J Anal At Spectrom 11:549–553CrossRefGoogle Scholar
  21. Dassenakis MI, Kloukiniotou MA, Pavlidou AS (1996) The influence of long existing pollution on trace metal levels in a small tidal Mediterranean Bay. Mar Pollut Bull 32:275–282CrossRefGoogle Scholar
  22. Dinnel PA, Link JM, Stober QJ, Letorneau MW, Roberts WE (1989) Comparative sensitivity of sea urchin sperm bioassays to metals and pesticide toxicity tests. Arch Environ Contam Toxicol 18:748–755CrossRefGoogle Scholar
  23. Drescher K, Boedeker W (1995) Assessment of the combined effects of substances: the relationship between concentration addition and independent action. Biometrics 51:716–730CrossRefGoogle Scholar
  24. Dunnett CW (1955) A multiple comparisons procedure for comparing several treatments with a control. J Amer Statistical Assoc 509:1096–1121CrossRefGoogle Scholar
  25. Dunnett CW (1964) New tables for multiple comparisons with a control. Biometrics 20:482–491CrossRefGoogle Scholar
  26. Faust M (1999) Combined effect of pollutants on aquatic organisms; verification of predictability using a mono-cellular green algae. University of Bremen, Bremen.Google Scholar
  27. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32CrossRefGoogle Scholar
  28. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63:43–63CrossRefGoogle Scholar
  29. Fernandez N, Beiras R (2001) Combined toxicity of dissolved mercury with Cu, Pb, and Cd on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 5:263–271CrossRefGoogle Scholar
  30. Filosto S, Roccheri MC, Bonaventura R, Matranga V (2008) Environmentally relevant Cd concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biol Toxicol 24:603–610CrossRefGoogle Scholar
  31. Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223:234–240CrossRefGoogle Scholar
  32. George SG (1990) Biochemical and cytological assessments of metal toxicity in marine animals. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, p 256Google Scholar
  33. Hernando MD, Ejerhoon M, Fernandez-Alba AR, Chisti Y (2003) Combined toxicity effects of MTBE and pesticides measured with Vibrio fisheri and Daphnia magna bioassays. Wat Res 37:4091–4098CrossRefGoogle Scholar
  34. Heyvang I (1994) Toxicité des micropollutants en milieu marin. Mise au point d’un test simplifi′e bas′e sur l’utilisation d’oeufs d’embryons et de pluteus de Paracentrotus lividus. Exemples d’applications. IFREMERGoogle Scholar
  35. His E, Heyvang I, Geffard O, De Mountadouin X (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassay for toxicological studies. Water Res 7:1706–1718CrossRefGoogle Scholar
  36. Hunt JW, Anderson BS, Turpen SL, Englund MA, Piekarski W (1997) Precision and sensitivity of a seven-day growth and survival toxicity test using the west coast marine mysid crustacean Holmesimysis costata. Environ Toxicol Chem 1:824–834Google Scholar
  37. Jonker MJ, Svendsen C, Bedaux JJM et al (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24:2701–2713CrossRefGoogle Scholar
  38. Junghans M, Backhaus T, Faust M (2006) Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76:93–110CrossRefGoogle Scholar
  39. Kamo M, Nagai T (2008) An application of the biotic ligand model to predict the toxic effects of metal mixtures. Environ Toxicol Chem 27:1479–1487CrossRefGoogle Scholar
  40. King CK, Riddle MJ (2001) Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Mar Ecol Prog Ser 215:143–154CrossRefGoogle Scholar
  41. Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44:748–751CrossRefGoogle Scholar
  42. Kobayashi N, Okamura H (2005) Effects of heavy metals on sea urchin embryo development. Part 2 Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere 61:1198–1203CrossRefGoogle Scholar
  43. Kraak MHS, Wink YA, Stuijfzand SC, Buckert-de Jonga MC, de Groota CJ, Admiraal W (1994) Chronic ecotoxicity of Zn and Pb to the zebra mussel Dreissena polymorpha. Aquat Toxicol 30:77–89CrossRefGoogle Scholar
  44. Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration, and membrane permeability of rice (Oryza sativa) roots. Plant Soil 219:21–28CrossRefGoogle Scholar
  45. Loewe S (1927) Die Mischarznei. Versuch einer allgemeinen Pharmakologie der Arzneikombinationen. Klin Wochenschr 6:1077–1085CrossRefGoogle Scholar
  46. Loewe S, Muischnek H (1926) Effect of combinations: mathematical basis of problem. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 114:313–326CrossRefGoogle Scholar
  47. Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58:27–41CrossRefGoogle Scholar
  48. Manfra L, Accornero A (2002) Monitoraggio delle concentrazioni di metalli pesanti nelle acque costiere della Campania. Annali dell’Università degli studi di Napoli Parthenope, LXVI, pp 53–63Google Scholar
  49. Manfra L, Accornero A (2005) Trace metal concentrations in coastal marine waters of the central Mediterranean. Mar Pollut Bull 50:686–692CrossRefGoogle Scholar
  50. Manzo S (2004) Sea urchin embryotoxicity test: proposal for a simplified bioassay. Ecotoxicol Environ Saf 57:123–128CrossRefGoogle Scholar
  51. Manzo S, Buono S, Cremisini C (2006) Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51:61–68CrossRefGoogle Scholar
  52. Manzo S, Buono S, Cremisini C (2008) Predictability of copper, irgarol, and diuron combined effects on sea urchin Paracentrotus lividus. Arch Environ Contam Toxicol 54:57–68CrossRefGoogle Scholar
  53. Marin MG, Moschino V, Cima F, Celli C (2000) Embryotoxicity of butyltin compounds to the sea urchin Paracentrotus lividus. Mar Environ Res 50:231–235CrossRefGoogle Scholar
  54. Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16:794–801CrossRefGoogle Scholar
  55. Nacci D, Serbst J, Gleason TR, Cayula S, Thursby G, Munns WR Jr, Johnston RK (2000) Biological responses of sea urchin Arbacia punctulata to lead contamination for an estuarine ecological risk assessment. J Aquat Ecosyst Stress Recovery 7:187–199CrossRefGoogle Scholar
  56. Norwood WP, Borgmann U, Dixon DG (2003) Effects of metal mixtures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess 9:795–811CrossRefGoogle Scholar
  57. Novelli AA, Losso C, Ghetti PF, Volpi Ghirardini A (2003) Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus (Echinodermata: Echinoidea): comparisons with exposure concentrations in the lagoon of Venice, Italy. Environ Toxicol Chem 22:1295–1301Google Scholar
  58. Otitoloju AA (2002) Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.). Ecotoxicol Environ Saf 53:404–415CrossRefGoogle Scholar
  59. Pagano G, Esposito A, Giordano GG (1982) Fertilization and larval development in sea urchin following exposure of gametes and embryos to cadmium. Arch Environ Contam Toxicol 11:47–55CrossRefGoogle Scholar
  60. Pagano G, Cipollaro M, Corsale G, Esposito A, Ragucci E, Giordano GG, Trieff NM (1986) The sea urchin: bioassay for the assessment of damage from environmental contaminants. In: Cairns J (ed) Community toxicity testing. American Society for Testing and Materials ASTM STP920, Philadelphia, pp 66–92CrossRefGoogle Scholar
  61. Pagano G, Iaccarino M, Guida M, Manzo S, Oral R, Romanelli R, Rossi M (1996a) Cadmium toxicity in spiked sediment to sea urchin embryos and sperm. Mar Environ Res 42:54–55CrossRefGoogle Scholar
  62. Pagano G, His E, Beiras R, De Biase A, Korkina LG, Iaccarino M, Oral R, Qiuniou F, Warnau M, Trieff NM (1996b) Cytogenetic, developmental, and biochemical effects of aluminium, iron, and their mixture in sea urchins and mussels. Arch Environ Contam Toxicol 31:466–474CrossRefGoogle Scholar
  63. Pavicic MJ, van Winkelhoff AJ, Douque NH, Steures RW, de Graaff J (1994) Microbiological and clinical effects of metronidazole and amoxicillin in Actinobacillus actinomycetemcomitans-associated periodontitis. A 2-year evaluation. J Clin Periodontol 21:107–112CrossRefGoogle Scholar
  64. Phillips BM, Nicely PA, Hunt JW, Anderson BS, Tjeerdema RS, Palmer SE, Palmer FH, Puckett HM (2003) Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins. Bull Environ Contam Toxicol 70:592–599CrossRefGoogle Scholar
  65. Radenac G, Fichet D, Miramand P (2001) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea urchin embryo. Mar Environ Res 51:151–166CrossRefGoogle Scholar
  66. Rosland E, Lund W (1998) Direct determination of trace metals in seawater by ICP-MS. J Anal At Spectrom 13:1239–1244CrossRefGoogle Scholar
  67. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme H (2001) A general best-fit method for concentration response curves and the estimation of low effect concentrations. Environ Toxicol Chem 20:448–457Google Scholar
  68. Shriadah MA, Okbah MA, El-Deek MS (2004) Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water Air Soil Pollut 153:115–124CrossRefGoogle Scholar
  69. UNEP (1996) Guidelines for Integrated Planning Management of Coastal and Marine Areas in the Wider Caribbean Region. UNEP Caribbean Environment Programme, Kingston, Jamaica, 141 ppGoogle Scholar
  70. US EPA (1993) A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach. National Effluent Toxicity Assessment Center Technical Report 03-93, Environmental Research Laboratory, Duluth, MinnesotaGoogle Scholar
  71. US EPA (1995) 600R95136 Short-term methods for estimating the chronic toxicity of effluents and receiving waters to West coast marine and estuarine organisms, Cincinnati, OhioGoogle Scholar
  72. Van Der Hoeven N, Noppert F, Annegaaike L (1997) How to measure no effect. Part I: towards a new measure of chronic toxicity in ecotoxicology. Introduction and workshop results. Environmetrics 8:241–248CrossRefGoogle Scholar
  73. Viarengo A (1985) Biochemical effects of trace-metals. Mar Pollut Bull 16:153–158CrossRefGoogle Scholar
  74. Volpi Ghirardini A, Arizzi Novelli A (2001) A sperm cell toxicity test procedure for the Mediterranean species Paracentrotus lividus (Echinodermata: Echinoidea). Environ Technol 22:439–445CrossRefGoogle Scholar
  75. Wang JY, Zhang MP, Xu JGWY (1995) Reciprocal effect of Cu, Cd, Zn on a kind of marine alga. Water Res 29:209–214CrossRefGoogle Scholar
  76. Warnau M, Pagano G (1994) Developmental toxicity of PbCl2 in the echinoid Paracentrotus lividus (Echinodermata). Bull Environ Contam Toxicol 53:434–441CrossRefGoogle Scholar
  77. Warnau M, Iaccarino M, De Biase A, Temara A, Jangoux M, Dubois P, Pagano G (1996) Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus lividus. Environ Toxicol Chem 15:1931–1936Google Scholar
  78. Wood CM (2001) Toxic responses of the gill. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts, vol 1. Taylor and Francis, USA, pp 1–89Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ENEA C. R. PorticiPorticiItaly
  2. 2.ENEAS. M. di GaleriaItaly

Personalised recommendations