Skip to main content
Log in

In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The logistics involved in obtaining and maintaining large numbers of corals hampers research on the toxicological effects of environmental contaminants for this ecologically and economically important taxon. A method for creating and culturing single-cell suspensions of viable coral cells was developed. Cell segregation/separation was based on specific cell densities and resulting cell cultures were viable for at least 2 mos. Low-density cells lacking symbiotic zooxanthallae and rich in mitochondria were isolated and cultured for toxicity studies. Cells were exposed to differing degrees or concentrations of heat stress, rotenone, cyanide, sulfide, and cuprous oxide. Cells were assayed for mitochondrial membrane potential using the fluorescent probe, JC-9, and for overall viability using the MTT/formazan spectrophotometric viability assay. Significant differences were observed between controls and treatments and the efficacy of this method was validated; only 2 cm2 of tissue was required for a seven-point concentration-exposure series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2002) Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J Fish Biol 60:893–901. doi:10.1111/j.1095-8649.2002.tb02416.x

    Article  Google Scholar 

  • Alonso JR, Cardellach F, Casademont J, Miró O (2004) Reversible inhibition of mitochondrial complex IV activity in PBMC following acute smoking. Eur Respir J 23:214–218. doi:10.1183/09031936.03.00038203

    Article  CAS  Google Scholar 

  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62. doi:10.1016/0166-445X(92)90015-F

    Article  CAS  Google Scholar 

  • Ballantyne B (1987) Toxicology of cyanides. In: Ballantyne B, Marrs TC (eds) Clinical and experimental toxicology of cyanides. Wright, Bristol, pp 41–126

    Google Scholar 

  • Barber CV, Pratt VR (1997) Sullied Seas: strategies to combat cyanide fishing in the Indo-Pacific region, Tambuli no. 4, pp 9–15

  • Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Blaauboe BJ (2008) The contribution of in vitro toxicity data in hazard and risk assessment: current limitations and future perspective. Toxicol Lett 180:81–84. doi:10.1016/j.toxlet.2008.05.008

    Article  CAS  Google Scholar 

  • Bouhours-Nouet N, May-Panloup P, Coutant R, de Casson FB, Descamps P, Douay O, Reynier P, Ritz P, Malthièry Y, Simard G (2005) Maternal smoking is associated with mitochondrial DNA depletion and respiratory chain complex III deficiency in placenta. Am J Physiol Endocrinol Metab 288:E171–E177. doi:10.1152/ajpendo.00260.2003

    Article  CAS  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Gonastrea aspera. Mar Eco Prog Ser 242:119–129

    Article  Google Scholar 

  • Bruckner AW (2000) New threat to coral reefs: trade in coral organisms. Iss Sci Technol Fall 2000:1–6

    Google Scholar 

  • Bruckner AW (2002) Trends in international trade in stony corals: a synopsis of CITES data. In: Bruckner A (ed) Proceedings of the international workshop on the trade in stony corals: development of sustainable management guidelines. NOAA, Silver Spring, pp 56–57

  • Bryant D, Burke L, McManus J, Spalding M (1998) Reefs at risk: a map-based indicator of threats to the world's coral reefs. World Resources Institute, Washington, DC, p 56

    Google Scholar 

  • Calfo A (2007) Book of coral propagation, vol 1, 2nd edn. Reading Trees

  • Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    CAS  Google Scholar 

  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155–4166. doi:10.1242/jcs.011163

    Article  CAS  Google Scholar 

  • Chhabra RS, Bucher JR, Wolfe M, Portier C (2003) Toxicity characterization of environmental chemicals by the US national toxicology program: an overview. Int J Hyg Environ Health 206:437–445. doi:10.1078/1438-4639-00240

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Collette BB, Williams JT, Thacker CE, Smith ML (2003) Shore fishes of Navassa Island, West Indies: a case study on the need for rotenone sampling of reef fish biodiversity studies. Aquat J Ichth Aquat Biol 6:89–131

    Google Scholar 

  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′- tetraethylbenzimidazolylcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45. doi:10.1006/bbrc.1993.2438

    Article  CAS  Google Scholar 

  • da Silva EM, Soares AM, Moreno AJ (1998) The use of the mitochondrial transmembrane electric potential as an effective biosensor in ecotoxicological research. Chemosphere 36:2375–2390. doi:10.1016/S0045-6535(97)10206-5

    Article  CAS  Google Scholar 

  • de Oliveira-Filho EC, Lopes RM, Paumgartten FJ (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374. doi:10.1016/j.chemosphere.2004.04.026

    Article  CAS  Google Scholar 

  • Downs CA (2005) Cellular diagnostics and its application to aquatic and marine toxicology. In: Ostrander G (ed) Techniques in aquatic toxicology, vol 2. CRC Press, Inc, Boca Raton

    Google Scholar 

  • Downs CA, Downs AG (2007) Preliminary examination of cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure: application of cellular diagnostics. Arch Toxicol Cont Chem 52:47–57. doi:10.1007/s00244-005-0213-6

    Article  CAS  Google Scholar 

  • Downs CA, Jones LR, Heckathorn SA (1999) Evidence for a novel set of small heat-shock proteins that associates with the mitochondria of murine PC12 cells and protects NADH:ubiquinone oxidoreductase from heat and oxidative stress. Arch Biochem Biophys 365:344–350. doi:10.1006/abbi.1999.1177

    Article  CAS  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth J, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar Biotechnol 2:533–544

    Article  CAS  Google Scholar 

  • Downs CA, Woodley CM, Richmond RH, Lanning LL, Owens R (2005a) Shifting the paradigm for coral reef ‘health’ assessment. Mar Pollut Bull 51:486–494. doi:10.1016/j.marpolbul.2005.06.028

    Article  CAS  Google Scholar 

  • Downs CA, Fauth JE, Robinson CE, Curry R, Lanzendorf B, Halas JC, Halas J, Woodley CM (2005b) Cellular diagnostics and coral health: declining coral health in the Florida keys. Mar Pollut Bull 51:558–569. doi:10.1016/j.marpolbul.2005.04.017

    Article  CAS  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y, Ostrander GK (2009) Symbiophagy as a mechanism for coral bleaching. Autophagy 5:211–216

    Article  CAS  Google Scholar 

  • Dubinsky Z, Stambler N (1996) Marine pollution and coral reefs. Glob Change Biol 2:511–526. doi:10.1111/j.1365-2486.1996.tb00064.x

    Article  Google Scholar 

  • Egekeze JO, Oehme FW (1980) Cyanides and their toxicity: a literature review. Vet Q 2:104–114

    CAS  Google Scholar 

  • Evans SM, Casartelli A, Herreros E, Minnick DT, Day C, George E, Westmoreland C (2001) Development of a high throughput in vitro toxicity screen predictive of high acute in vivo toxic potential. Toxicol In Vitro 15:579–584. doi:10.1016/S0887-2333(01)00064-9

    Article  CAS  Google Scholar 

  • García-Escudero V, Gargini R (2008) Autophagy induction as an efficient strategy to eradicate tumors. Autophagy 4:923–925

    Google Scholar 

  • Gardner T, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960. doi:10.1126/science.1086050

    Article  CAS  Google Scholar 

  • Gates R, Muscatine L (1992) Three methods for isolating viable anthozoan endoderm cells with their intracellular symbiotic dinoflagellates. Coral Reefs 11:143–145. doi:10.1007/BF00255468

    Article  Google Scholar 

  • Gilboa-Garber N (1971) Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures. Biochem 43:129–133

    CAS  Google Scholar 

  • Goreau TJ, McClananhan T, Hayes R, Strong AE (2000) Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol 14:5–15

    Article  Google Scholar 

  • Grieshabe MK, Völkel S (1998) Animal adaptation for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53. doi:10.1146/annurev.physiol.60.1.33

    Article  Google Scholar 

  • Gura T (2008) Toxicity testing moves from the legislature to the Petri dish–and back. Cell 134:557–559. doi:10.1016/j.cell.2008.08.011

    Article  CAS  Google Scholar 

  • Harriott VJ (1985) Mortality rates of scleractinian corals before and during a mass bleaching event. Mar Ecol Prog Ser 21:81–88. doi:10.3354/meps021081

    Article  Google Scholar 

  • Henderson RS (1988) Marine microcosm experiments on effects of copper and tributyltin-based antifouling paint leachates. Technical Report No. 1060, US Naval Ocean Systems Center, San Diego

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866

    Article  Google Scholar 

  • Jaap WC, Wheaton J (1975) Observations on Florida reef corals treated with fish-collecting chemicals. Fla Mar Res Publ 10:1–17

    Google Scholar 

  • Jameson SC, Tupper MH, Ridley JM (2002) The three screen doors: can marine “protected” areas be effective? Mar Pollut Bull 44:1177–1183. doi:10.1016/S0025-326X(02)00258-8

    Article  CAS  Google Scholar 

  • Jones RJ (1977) Effects of cyanide on coral. SPC Live Reef Fish Inf Bull 3:3–8

    Google Scholar 

  • Jones RJ, Steven AL (1997) Effects of cyanide on corals in relation to cyanide fishing on reefs. Mar Freshw Res 48:517–522. doi:10.1071/MF97048

    Article  CAS  Google Scholar 

  • Kopecky LJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol 35:616–624. doi:10.1007/s11626-999-0101-x

    Article  CAS  Google Scholar 

  • Kraines SB, Isobe M, Komiyama H (2001) Seasonal variations in the exchange of water and water-borne particles at Majuro Atoll, the Republic of the Marshall Islands. Coral Reefs 20:330–340. doi:10.1007/s00338-001-0191-8

    Article  Google Scholar 

  • Kulbiki M (1990) Comparisons between rotenone poisoning and visual counts for density and biomass estimates of coral reef fish populations. In: Proceedings of the 1990 congress of the international society for reef studies 14–18 November 1990, Noumea, New Caledonia, pp 105–112

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525. doi:10.1074/jbc.M210432200

    Article  CAS  Google Scholar 

  • Mackie C, Lloyd G (2002) Antifoulants and marine biocides. In: The biocide business. Wiley–VCH Verlag GmbH & Co. KGaA, pp 287–300

  • Maftah A, Petit JM, Ratinaud MH, Julien R (1989) 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem Biophys Res Commun 164:185–190. doi:10.1016/0006-291X(89)91700-2

    Article  CAS  Google Scholar 

  • Mak KKW, Yanase H, Renneberg R (2005) Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors. Bionsens Bioelect 20:2581–2593. doi:10.1016/j.bios.2004.09.015

    Article  CAS  Google Scholar 

  • Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507:187–190. doi:10.1016/S0014-5793(01)02948-9

    Article  CAS  Google Scholar 

  • Miró O, Alonso JR, Jarreta D, Casademont J, Urbano-Márquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20:1331–1336. doi:10.1093/carcin/20.7.1331

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • National Research Council (2007) Toxicity testing in the twenty-first century: a vision and a strategy. National Academies Press, Washington

    Google Scholar 

  • Nicholson RA, Roth SH, Zhang A, Zheng J, Brookes J, Skrajny B, Bennington R (1998) Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J Toxicol Environ Health A 54:491–507. doi:10.1080/009841098158773

    Article  CAS  Google Scholar 

  • O’Brien RD (1967) Insecticides: action and metabolism. Academic Press, New York, pp 159–163

    Google Scholar 

  • O’Brien P, Haskins JR (2007) In vitro cytotoxicity assessment. Methods Mol Biol 356:415–425

    Google Scholar 

  • Parks J, Pomeroy R, Balboa C (2003) The economics of live rock and live coral mariculture. In: Cato J, Brown C (eds) Marine ornamental species: collection, culture and conservation. Iowa University Press, pp 185–208

  • Pastorok RA, Bilyard DR (1985) Effects of sewage pollution on coral reef communities. Mar Ecol Prog Ser 21:175–189. doi:10.3354/meps021175

    Article  Google Scholar 

  • Reichelt-Burshett AJ, Harrison PL (2000) The effect of copper on the settlement success of larvae from the scleractinian coral Acropora tenuis. Mar Pollut Bull 41:7–12

    Google Scholar 

  • Reichelt-Burshett AJ, Harrison PL (2004) Development of a sublethal test to determine the effects of copper and lead on scleractinian coral larvae. Arch Environ Contam Toxicol 47:40–55

    Google Scholar 

  • Richmond RH (1993) Coral reefs: present problems and future concerns resulting from anthropogenic disturbance. Am Zool 33:524–536

    Google Scholar 

  • Risk MJ (1999) Paradise lost: how marine science failed the world’s coral reefs. Mar Freshw Res 50:831–837. doi:10.1071/MF99067

    Article  Google Scholar 

  • Robertson JD, Orrenius S (2002) Role of mitochondria in toxic cell death. Toxicol 181–182:491–496. doi:10.1016/S0300-483X(02)00464-X

    Article  Google Scholar 

  • Robertson DR, Smith-Vaniz WF (2008) Rotenone: an essential but demonized tool for assessing marine fish diversity. Bioscience 58:165–170. doi:10.1641/B580211

    Article  Google Scholar 

  • Robinson S (1985) Collecting tropical marines–an interview with Eral Kennedy: the founding father of the Philippine fish trade speak out, Part 2. Fresw Mar Aquar 8:27–28

    Google Scholar 

  • Rougée L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the stony coral Pocillopora damicornis following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187. doi:10.1897/05-510R2.1

    Article  Google Scholar 

  • Rubec P (1988) The need for conservation and management of Philippine coral reefs. Environ Biol Fishes 23:141–154. doi:10.1007/BF00000745

    Article  Google Scholar 

  • Schultz LP (1948) The use of rotenone for collecting reef- and lagoon fishes at Bikini. Copeia 1948:94–98. doi:10.2307/1438410

    Article  Google Scholar 

  • Schwab CE, Tuschl H (2003) In vitro studies on the toxicity of isoniazid in different cell lines. Hum Exp Toxicol 22:607–615. doi:10.1191/0960327103ht401oa

    Article  CAS  Google Scholar 

  • Scorecard (2005) http://www.scorecard.org/chemical-profiles/pesticides.tcl?edf_substance_id=1317-39-1

  • Sieuwerts A, Klijn JGM, Peters HA, Foekens JA (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50–values and cell survival. Eur J Clin Chem Clin Biochem 33:813–823

    CAS  Google Scholar 

  • Smee DF, Morrison AC, Barnard DL, Sidwell RW (2002) Comparison of colorimetric, fluorometric, and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J Virol Methods 106:71–79. doi:10.1016/S0166-0934(02)00137-4

    Article  CAS  Google Scholar 

  • Smith PR, Cooper JM, Govan GG, Harding AE, Schapira AH (1993) Smoking and mitochondrial function: a model for environmental toxins. Q J Med 86:657–660

    CAS  Google Scholar 

  • Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar Poll Bull 56:1983–1991

    Article  CAS  Google Scholar 

  • Sorokin YI (1973) Role of microflora in the metabolism and productivity of Hawaiian reefs. Oceanology (Mosc) 13:262–267

    Google Scholar 

  • Supino R (1995) MTT assays. In: O’Hare S, Atterwill CK (eds) In vitro toxicity testing protocols. Humana Press, New Jersey, pp 137–149

    Chapter  Google Scholar 

  • Terzioglu M, Larsson NG (2007) Mitochondrial dysfunction in mammalian ageing. Novartis Found Symp 287:197–208. doi:10.1002/9780470725207.ch14

    Article  CAS  Google Scholar 

  • Turgeon DD, Asch RG, Causey BD, Dodge RE, Jaap W, Banks K, Delaney J, Keller BD, Speiler R, Matos CA, Garcia JR, Diaz E, Catanzaro D, Rogers CS, Hillis-Starr Z, Nemeth R, Taylor M, Schmahl GP, Miller MW, Gulko DA, Maragos JE, Friedlander AM, Hunter CL, Brainard RS, Craig P, Richmond RH, Davis G, Starmer J, Trianni M, Houk P, Birkeland CE, Edward A, Golbuu Y, Gutierrez J, Idechong N, Paulay G, Tafileichig A, Vander Velde N (2002) The state of coral reef ecosystems of the United States and Pacific Freely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, Silver Spring, MD, 265 pp

  • van der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJ, Gans RO, Koëter GH, van Oosterhout AJ, Kauffman HF (2007) Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell Mol Physiol 292:L1211–L1218. doi:10.1152/ajplung.00291.2006

    Article  CAS  Google Scholar 

  • Wabnitz C, Taylor M, Green E, Razak T (2003) From Ocean to Aquaria: the global trade in ornamental species. UNEP/WCMC, Cambridge

  • Walker DI, Ormond RFG (1982) Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar Poll Bull 13:21–25

    Article  Google Scholar 

  • Wang F, Chapman PM (1999) Biological implications of sulfide in sediment–a review focusing of sediment toxicity. Environ Toxicol Chem 18:2526–2532. doi:10.1897/1551-5028(1999)018<2526:BIOSIS>2.3.CO;2

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  Google Scholar 

  • Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshwater Res 50:867–878

    Article  Google Scholar 

  • Wilkinson C (ed) (2000) Status of coral reefs of the world: 2000. Australian Institute of Marine Science, Western Australia, p 363

  • Wilkinson C (ed) (2002) Status of coral reefs of the world: 2002. Australian Institute of Marine Science, Western Australia, p 378

  • Wohlgemuth SE, Julian D (2003) Mitochondrial sulfide-sensitivity in coelomocytes from the sulfide-adapted marine invertebrate Glycera dibranchiata. Bull Mt Desert I Mar Biol Lab 42:15–16

    Google Scholar 

  • Yang A, Cardona DL, Barile FA (2002) Subacute cytotoxicity testing with cultured human lung cells. Toxicol In Vitro 16:33–39. doi:10.1016/S0887-2333(01)00098-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Julian for instruction in conducting sulfide-exposure experiments and measuring sulfide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Downs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downs, C.A., Fauth, J.E., Downs, V.D. et al. In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology 19, 171–184 (2010). https://doi.org/10.1007/s10646-009-0403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0403-5

Keywords

Navigation