, Volume 19, Issue 1, pp 171–184 | Cite as

In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function

  • Craig A. Downs
  • John E. Fauth
  • Virgil D. Downs
  • Gary K. Ostrander


The logistics involved in obtaining and maintaining large numbers of corals hampers research on the toxicological effects of environmental contaminants for this ecologically and economically important taxon. A method for creating and culturing single-cell suspensions of viable coral cells was developed. Cell segregation/separation was based on specific cell densities and resulting cell cultures were viable for at least 2 mos. Low-density cells lacking symbiotic zooxanthallae and rich in mitochondria were isolated and cultured for toxicity studies. Cells were exposed to differing degrees or concentrations of heat stress, rotenone, cyanide, sulfide, and cuprous oxide. Cells were assayed for mitochondrial membrane potential using the fluorescent probe, JC-9, and for overall viability using the MTT/formazan spectrophotometric viability assay. Significant differences were observed between controls and treatments and the efficacy of this method was validated; only 2 cm2 of tissue was required for a seven-point concentration-exposure series.


Cell isolation Coral Cyanide Cytotoxicity Cuprous oxide Sulfide 



We thank Dr. David Julian for instruction in conducting sulfide-exposure experiments and measuring sulfide.


  1. Ackerman JL, Bellwood DR (2002) Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J Fish Biol 60:893–901. doi: 10.1111/j.1095-8649.2002.tb02416.x CrossRefGoogle Scholar
  2. Alonso JR, Cardellach F, Casademont J, Miró O (2004) Reversible inhibition of mitochondrial complex IV activity in PBMC following acute smoking. Eur Respir J 23:214–218. doi: 10.1183/09031936.03.00038203 CrossRefGoogle Scholar
  3. Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62. doi: 10.1016/0166-445X(92)90015-F CrossRefGoogle Scholar
  4. Ballantyne B (1987) Toxicology of cyanides. In: Ballantyne B, Marrs TC (eds) Clinical and experimental toxicology of cyanides. Wright, Bristol, pp 41–126Google Scholar
  5. Barber CV, Pratt VR (1997) Sullied Seas: strategies to combat cyanide fishing in the Indo-Pacific region, Tambuli no. 4, pp 9–15Google Scholar
  6. Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefGoogle Scholar
  7. Blaauboe BJ (2008) The contribution of in vitro toxicity data in hazard and risk assessment: current limitations and future perspective. Toxicol Lett 180:81–84. doi: 10.1016/j.toxlet.2008.05.008 CrossRefGoogle Scholar
  8. Bouhours-Nouet N, May-Panloup P, Coutant R, de Casson FB, Descamps P, Douay O, Reynier P, Ritz P, Malthièry Y, Simard G (2005) Maternal smoking is associated with mitochondrial DNA depletion and respiratory chain complex III deficiency in placenta. Am J Physiol Endocrinol Metab 288:E171–E177. doi: 10.1152/ajpendo.00260.2003 CrossRefGoogle Scholar
  9. Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Gonastrea aspera. Mar Eco Prog Ser 242:119–129CrossRefGoogle Scholar
  10. Bruckner AW (2000) New threat to coral reefs: trade in coral organisms. Iss Sci Technol Fall 2000:1–6Google Scholar
  11. Bruckner AW (2002) Trends in international trade in stony corals: a synopsis of CITES data. In: Bruckner A (ed) Proceedings of the international workshop on the trade in stony corals: development of sustainable management guidelines. NOAA, Silver Spring, pp 56–57Google Scholar
  12. Bryant D, Burke L, McManus J, Spalding M (1998) Reefs at risk: a map-based indicator of threats to the world's coral reefs. World Resources Institute, Washington, DC, p 56Google Scholar
  13. Calfo A (2007) Book of coral propagation, vol 1, 2nd edn. Reading TreesGoogle Scholar
  14. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942Google Scholar
  15. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155–4166. doi: 10.1242/jcs.011163 CrossRefGoogle Scholar
  16. Chhabra RS, Bucher JR, Wolfe M, Portier C (2003) Toxicity characterization of environmental chemicals by the US national toxicology program: an overview. Int J Hyg Environ Health 206:437–445. doi: 10.1078/1438-4639-00240 CrossRefGoogle Scholar
  17. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  18. Collette BB, Williams JT, Thacker CE, Smith ML (2003) Shore fishes of Navassa Island, West Indies: a case study on the need for rotenone sampling of reef fish biodiversity studies. Aquat J Ichth Aquat Biol 6:89–131Google Scholar
  19. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′- tetraethylbenzimidazolylcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45. doi: 10.1006/bbrc.1993.2438 CrossRefGoogle Scholar
  20. da Silva EM, Soares AM, Moreno AJ (1998) The use of the mitochondrial transmembrane electric potential as an effective biosensor in ecotoxicological research. Chemosphere 36:2375–2390. doi: 10.1016/S0045-6535(97)10206-5 CrossRefGoogle Scholar
  21. de Oliveira-Filho EC, Lopes RM, Paumgartten FJ (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374. doi: 10.1016/j.chemosphere.2004.04.026 CrossRefGoogle Scholar
  22. Downs CA (2005) Cellular diagnostics and its application to aquatic and marine toxicology. In: Ostrander G (ed) Techniques in aquatic toxicology, vol 2. CRC Press, Inc, Boca RatonGoogle Scholar
  23. Downs CA, Downs AG (2007) Preliminary examination of cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure: application of cellular diagnostics. Arch Toxicol Cont Chem 52:47–57. doi: 10.1007/s00244-005-0213-6 CrossRefGoogle Scholar
  24. Downs CA, Jones LR, Heckathorn SA (1999) Evidence for a novel set of small heat-shock proteins that associates with the mitochondria of murine PC12 cells and protects NADH:ubiquinone oxidoreductase from heat and oxidative stress. Arch Biochem Biophys 365:344–350. doi: 10.1006/abbi.1999.1177 CrossRefGoogle Scholar
  25. Downs CA, Mueller E, Phillips S, Fauth J, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar Biotechnol 2:533–544CrossRefGoogle Scholar
  26. Downs CA, Woodley CM, Richmond RH, Lanning LL, Owens R (2005a) Shifting the paradigm for coral reef ‘health’ assessment. Mar Pollut Bull 51:486–494. doi: 10.1016/j.marpolbul.2005.06.028 CrossRefGoogle Scholar
  27. Downs CA, Fauth JE, Robinson CE, Curry R, Lanzendorf B, Halas JC, Halas J, Woodley CM (2005b) Cellular diagnostics and coral health: declining coral health in the Florida keys. Mar Pollut Bull 51:558–569. doi: 10.1016/j.marpolbul.2005.04.017 CrossRefGoogle Scholar
  28. Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y, Ostrander GK (2009) Symbiophagy as a mechanism for coral bleaching. Autophagy 5:211–216CrossRefGoogle Scholar
  29. Dubinsky Z, Stambler N (1996) Marine pollution and coral reefs. Glob Change Biol 2:511–526. doi: 10.1111/j.1365-2486.1996.tb00064.x CrossRefGoogle Scholar
  30. Egekeze JO, Oehme FW (1980) Cyanides and their toxicity: a literature review. Vet Q 2:104–114Google Scholar
  31. Evans SM, Casartelli A, Herreros E, Minnick DT, Day C, George E, Westmoreland C (2001) Development of a high throughput in vitro toxicity screen predictive of high acute in vivo toxic potential. Toxicol In Vitro 15:579–584. doi: 10.1016/S0887-2333(01)00064-9 CrossRefGoogle Scholar
  32. García-Escudero V, Gargini R (2008) Autophagy induction as an efficient strategy to eradicate tumors. Autophagy 4:923–925Google Scholar
  33. Gardner T, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960. doi: 10.1126/science.1086050 CrossRefGoogle Scholar
  34. Gates R, Muscatine L (1992) Three methods for isolating viable anthozoan endoderm cells with their intracellular symbiotic dinoflagellates. Coral Reefs 11:143–145. doi: 10.1007/BF00255468 CrossRefGoogle Scholar
  35. Gilboa-Garber N (1971) Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures. Biochem 43:129–133Google Scholar
  36. Goreau TJ, McClananhan T, Hayes R, Strong AE (2000) Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol 14:5–15CrossRefGoogle Scholar
  37. Grieshabe MK, Völkel S (1998) Animal adaptation for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53. doi: 10.1146/annurev.physiol.60.1.33 CrossRefGoogle Scholar
  38. Gura T (2008) Toxicity testing moves from the legislature to the Petri dish–and back. Cell 134:557–559. doi: 10.1016/j.cell.2008.08.011 CrossRefGoogle Scholar
  39. Harriott VJ (1985) Mortality rates of scleractinian corals before and during a mass bleaching event. Mar Ecol Prog Ser 21:81–88. doi: 10.3354/meps021081 CrossRefGoogle Scholar
  40. Henderson RS (1988) Marine microcosm experiments on effects of copper and tributyltin-based antifouling paint leachates. Technical Report No. 1060, US Naval Ocean Systems Center, San DiegoGoogle Scholar
  41. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866CrossRefGoogle Scholar
  42. Jaap WC, Wheaton J (1975) Observations on Florida reef corals treated with fish-collecting chemicals. Fla Mar Res Publ 10:1–17Google Scholar
  43. Jameson SC, Tupper MH, Ridley JM (2002) The three screen doors: can marine “protected” areas be effective? Mar Pollut Bull 44:1177–1183. doi: 10.1016/S0025-326X(02)00258-8 CrossRefGoogle Scholar
  44. Jones RJ (1977) Effects of cyanide on coral. SPC Live Reef Fish Inf Bull 3:3–8Google Scholar
  45. Jones RJ, Steven AL (1997) Effects of cyanide on corals in relation to cyanide fishing on reefs. Mar Freshw Res 48:517–522. doi: 10.1071/MF97048 CrossRefGoogle Scholar
  46. Kopecky LJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol 35:616–624. doi: 10.1007/s11626-999-0101-x CrossRefGoogle Scholar
  47. Kraines SB, Isobe M, Komiyama H (2001) Seasonal variations in the exchange of water and water-borne particles at Majuro Atoll, the Republic of the Marshall Islands. Coral Reefs 20:330–340. doi: 10.1007/s00338-001-0191-8 CrossRefGoogle Scholar
  48. Kulbiki M (1990) Comparisons between rotenone poisoning and visual counts for density and biomass estimates of coral reef fish populations. In: Proceedings of the 1990 congress of the international society for reef studies 14–18 November 1990, Noumea, New Caledonia, pp 105–112Google Scholar
  49. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525. doi: 10.1074/jbc.M210432200 CrossRefGoogle Scholar
  50. Mackie C, Lloyd G (2002) Antifoulants and marine biocides. In: The biocide business. Wiley–VCH Verlag GmbH & Co. KGaA, pp 287–300Google Scholar
  51. Maftah A, Petit JM, Ratinaud MH, Julien R (1989) 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem Biophys Res Commun 164:185–190. doi: 10.1016/0006-291X(89)91700-2 CrossRefGoogle Scholar
  52. Mak KKW, Yanase H, Renneberg R (2005) Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors. Bionsens Bioelect 20:2581–2593. doi: 10.1016/j.bios.2004.09.015 CrossRefGoogle Scholar
  53. Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507:187–190. doi: 10.1016/S0014-5793(01)02948-9 CrossRefGoogle Scholar
  54. Miró O, Alonso JR, Jarreta D, Casademont J, Urbano-Márquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20:1331–1336. doi: 10.1093/carcin/20.7.1331 CrossRefGoogle Scholar
  55. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  56. National Research Council (2007) Toxicity testing in the twenty-first century: a vision and a strategy. National Academies Press, WashingtonGoogle Scholar
  57. Nicholson RA, Roth SH, Zhang A, Zheng J, Brookes J, Skrajny B, Bennington R (1998) Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J Toxicol Environ Health A 54:491–507. doi: 10.1080/009841098158773 CrossRefGoogle Scholar
  58. O’Brien RD (1967) Insecticides: action and metabolism. Academic Press, New York, pp 159–163Google Scholar
  59. O’Brien P, Haskins JR (2007) In vitro cytotoxicity assessment. Methods Mol Biol 356:415–425Google Scholar
  60. Parks J, Pomeroy R, Balboa C (2003) The economics of live rock and live coral mariculture. In: Cato J, Brown C (eds) Marine ornamental species: collection, culture and conservation. Iowa University Press, pp 185–208Google Scholar
  61. Pastorok RA, Bilyard DR (1985) Effects of sewage pollution on coral reef communities. Mar Ecol Prog Ser 21:175–189. doi: 10.3354/meps021175 CrossRefGoogle Scholar
  62. Reichelt-Burshett AJ, Harrison PL (2000) The effect of copper on the settlement success of larvae from the scleractinian coral Acropora tenuis. Mar Pollut Bull 41:7–12Google Scholar
  63. Reichelt-Burshett AJ, Harrison PL (2004) Development of a sublethal test to determine the effects of copper and lead on scleractinian coral larvae. Arch Environ Contam Toxicol 47:40–55Google Scholar
  64. Richmond RH (1993) Coral reefs: present problems and future concerns resulting from anthropogenic disturbance. Am Zool 33:524–536Google Scholar
  65. Risk MJ (1999) Paradise lost: how marine science failed the world’s coral reefs. Mar Freshw Res 50:831–837. doi: 10.1071/MF99067 CrossRefGoogle Scholar
  66. Robertson JD, Orrenius S (2002) Role of mitochondria in toxic cell death. Toxicol 181–182:491–496. doi: 10.1016/S0300-483X(02)00464-X CrossRefGoogle Scholar
  67. Robertson DR, Smith-Vaniz WF (2008) Rotenone: an essential but demonized tool for assessing marine fish diversity. Bioscience 58:165–170. doi: 10.1641/B580211 CrossRefGoogle Scholar
  68. Robinson S (1985) Collecting tropical marines–an interview with Eral Kennedy: the founding father of the Philippine fish trade speak out, Part 2. Fresw Mar Aquar 8:27–28Google Scholar
  69. Rougée L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the stony coral Pocillopora damicornis following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187. doi: 10.1897/05-510R2.1 CrossRefGoogle Scholar
  70. Rubec P (1988) The need for conservation and management of Philippine coral reefs. Environ Biol Fishes 23:141–154. doi: 10.1007/BF00000745 CrossRefGoogle Scholar
  71. Schultz LP (1948) The use of rotenone for collecting reef- and lagoon fishes at Bikini. Copeia 1948:94–98. doi: 10.2307/1438410 CrossRefGoogle Scholar
  72. Schwab CE, Tuschl H (2003) In vitro studies on the toxicity of isoniazid in different cell lines. Hum Exp Toxicol 22:607–615. doi: 10.1191/0960327103ht401oa CrossRefGoogle Scholar
  73. Sieuwerts A, Klijn JGM, Peters HA, Foekens JA (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50–values and cell survival. Eur J Clin Chem Clin Biochem 33:813–823Google Scholar
  74. Smee DF, Morrison AC, Barnard DL, Sidwell RW (2002) Comparison of colorimetric, fluorometric, and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J Virol Methods 106:71–79. doi: 10.1016/S0166-0934(02)00137-4 CrossRefGoogle Scholar
  75. Smith PR, Cooper JM, Govan GG, Harding AE, Schapira AH (1993) Smoking and mitochondrial function: a model for environmental toxins. Q J Med 86:657–660Google Scholar
  76. Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar Poll Bull 56:1983–1991CrossRefGoogle Scholar
  77. Sorokin YI (1973) Role of microflora in the metabolism and productivity of Hawaiian reefs. Oceanology (Mosc) 13:262–267Google Scholar
  78. Supino R (1995) MTT assays. In: O’Hare S, Atterwill CK (eds) In vitro toxicity testing protocols. Humana Press, New Jersey, pp 137–149CrossRefGoogle Scholar
  79. Terzioglu M, Larsson NG (2007) Mitochondrial dysfunction in mammalian ageing. Novartis Found Symp 287:197–208. doi: 10.1002/9780470725207.ch14 CrossRefGoogle Scholar
  80. Turgeon DD, Asch RG, Causey BD, Dodge RE, Jaap W, Banks K, Delaney J, Keller BD, Speiler R, Matos CA, Garcia JR, Diaz E, Catanzaro D, Rogers CS, Hillis-Starr Z, Nemeth R, Taylor M, Schmahl GP, Miller MW, Gulko DA, Maragos JE, Friedlander AM, Hunter CL, Brainard RS, Craig P, Richmond RH, Davis G, Starmer J, Trianni M, Houk P, Birkeland CE, Edward A, Golbuu Y, Gutierrez J, Idechong N, Paulay G, Tafileichig A, Vander Velde N (2002) The state of coral reef ecosystems of the United States and Pacific Freely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, Silver Spring, MD, 265 ppGoogle Scholar
  81. van der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJ, Gans RO, Koëter GH, van Oosterhout AJ, Kauffman HF (2007) Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell Mol Physiol 292:L1211–L1218. doi: 10.1152/ajplung.00291.2006 CrossRefGoogle Scholar
  82. Wabnitz C, Taylor M, Green E, Razak T (2003) From Ocean to Aquaria: the global trade in ornamental species. UNEP/WCMC, CambridgeGoogle Scholar
  83. Walker DI, Ormond RFG (1982) Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar Poll Bull 13:21–25CrossRefGoogle Scholar
  84. Wang F, Chapman PM (1999) Biological implications of sulfide in sediment–a review focusing of sediment toxicity. Environ Toxicol Chem 18:2526–2532. doi: 10.1897/1551-5028(1999)018<2526:BIOSIS>2.3.CO;2 CrossRefGoogle Scholar
  85. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012CrossRefGoogle Scholar
  86. Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshwater Res 50:867–878CrossRefGoogle Scholar
  87. Wilkinson C (ed) (2000) Status of coral reefs of the world: 2000. Australian Institute of Marine Science, Western Australia, p 363Google Scholar
  88. Wilkinson C (ed) (2002) Status of coral reefs of the world: 2002. Australian Institute of Marine Science, Western Australia, p 378Google Scholar
  89. Wohlgemuth SE, Julian D (2003) Mitochondrial sulfide-sensitivity in coelomocytes from the sulfide-adapted marine invertebrate Glycera dibranchiata. Bull Mt Desert I Mar Biol Lab 42:15–16Google Scholar
  90. Yang A, Cardona DL, Barile FA (2002) Subacute cytotoxicity testing with cultured human lung cells. Toxicol In Vitro 16:33–39. doi: 10.1016/S0887-2333(01)00098-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Craig A. Downs
    • 1
    • 2
  • John E. Fauth
    • 3
  • Virgil D. Downs
    • 1
  • Gary K. Ostrander
    • 4
  1. 1.Haereticus Environmental LaboratoryCliffordUSA
  2. 2.Office of Public Health Studies, John A. Burns School of MedicineUniversity of Hawaii—ManoaHonoluluUSA
  3. 3.Department of BiologyUniversity of Central FloridaOrlandoUSA
  4. 4.Pacific Biosciences Research CenterUniversity of Hawaii—ManoaHonoluluUSA

Personalised recommendations