Advertisement

Ecotoxicology

, 19:163 | Cite as

Effect of dietary cadmium on lipid metabolism and storage of aquatic bird Cairina moschata

  • Magali Lucia
  • Jean-Marc André
  • Patrice Gonzalez
  • Magalie Baudrimont
  • Marie-Dominique Bernadet
  • Karine Gontier
  • Régine Maury-Brachet
  • Gérard Guy
  • Stéphane Davail
Article

Abstract

In environment, birds often fast in connection with breeding, migration or drastic climatic conditions and need to mobilize lipid reserves during these periods. The impairment of lipid metabolism by cadmium (Cd; 1 mg kg−1 added in diet) was investigated on palmiped Cairina moschata. Expression levels of genes involved in lipid metabolism, mitochondrial metabolism and detoxification were investigated in liver and muscle of ducks. Lipid content in muscle and liver were analysed and plasma triglycerides were quantified. After 20 days, ducks exposed to Cd displayed a lower body weight and lower lipid content in liver than controls. In muscle, the increase of lipid content was only significant for control ducks but not for exposed ducks. Exposed ducks appeared unable to sufficiently transport and store lipids into peripheral tissues. Cd impairs lipid metabolism by several ways. First, Cd triggered the down-regulation of fatty acids synthesis in liver even if the NADPH production and the mitochondrial metabolism are enhanced, suggesting a stronger energy needs. Secondly, the associated decrease of plasma triglycerides and lipoprotein lipase activity with Cd are consistent with impairment of lipids storage in peripheral tissues.

Keywords

Cadmium Aquatic bird Cairina moschata Gene expression Lipid metabolism 

Notes

Acknowledgments

The authors would like to thank the Conseil Général des Landes (France) for their financial support and the INRA of Artiguères for technical help.

References

  1. André JM, Guy G, Gontier-Latonnelle K, Bernadet MD, Davail B, Hoo-Paris R, Davail S (2007) Influence of lipoprotein-lipase activity on plasma triacylglycerol concentration and lipid storage in three genotypes of ducks. Comp Biochem Physiol A Mol Integr Physiol 148:899–902. doi: 10.1016/j.cbpa.2007.09.006 CrossRefGoogle Scholar
  2. Auwerx J, Leroy P, Schoonjans K (1992) Lipoprotein lipase: recent contributions from molecular biology. Crit Rev Clin Lab Sci 29:243–268. doi: 10.3109/10408369209114602 CrossRefGoogle Scholar
  3. Baudrimont M, Schäfer J, Marie V, Maury-Brachet R, Bossy C, Boudou A, Blanc G (2005) Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Médoc salt marshes (Gironde estuary, France). Sci Total Environ 337:265–280. doi: 10.1016/j.scitotenv.2004.07.009 CrossRefGoogle Scholar
  4. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559. doi: 10.1016/j.biochi.2006.10.001 CrossRefGoogle Scholar
  5. Berzina N, Markovs J, Isajevs S, Apsite M, Smirnova G (2007) Cadmium-induced enteropathy in domestic cocks: a biochemical and histological study after subchronic exposure. Basic Clin Pharmacol Toxicol 101:29–34. doi: 10.1111/j.1742-7843.2007.00072.x CrossRefGoogle Scholar
  6. Cherel Y, Robin JP, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166. doi: 10.1139/z88-022 CrossRefGoogle Scholar
  7. Digel M, Ehehalt R, Stremmel W, Füllekrug J (2009) Acyl-CoA synthetases: fatty acid uptake and metabolic channeling. Mol Cell Biochem 326:23–28. doi: 10.1007/s11010-008-0003-3 CrossRefGoogle Scholar
  8. Erdogan Z, Erdogan S, Celik S, Unlu A (2005) Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol Trace Elem Res 104:19–31. doi: 10.1385/BTER:104:1:019 CrossRefGoogle Scholar
  9. Folch J, Lees M, Stanley GHS (1957) A simple method fort he isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  10. Gaskin F, Clayton RB (1972) An interstrain difference in cholesterol synthesis in vitro in mice, dependent upon a difference in endogenous NADPH-generating capacity. J Lipid Res 13:106–114Google Scholar
  11. Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707Google Scholar
  12. Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225–235. doi: 10.1007/s10534-005-5670-x CrossRefGoogle Scholar
  13. Hermier D (1997) Lipoprotein metabolism and fattening in poultry. J Nutr 127:805–808Google Scholar
  14. Herzberg GR, Brosnan JT, Hall B, Rogerson M (1988) Gluconeogenesis in liver and kidney of common murre (Uria aalge). Am J Physiol Regul Integr Comp Physiol 254:903–907Google Scholar
  15. Iritani N, Ikeda Y, Fukuda H, Katsurada A (1984) Comparative study of lipogenic enzymes in several vertebrates. Lipids 19:828–835. doi: 10.1007/BF02534511 CrossRefGoogle Scholar
  16. Iynedjian P (1993) Mammalian glucokinase and its gene. Biochem J 293:1–13Google Scholar
  17. Jordan SA, Bhatnagar MK, Bettger WJ (1990) Combined effects of methylmercury, lead, and cadmium on hepatic metallothionein and metal concentrations in the pekin duck. Arch Environ Contam Toxicol 19:886–891. doi: 10.1007/BF01055055 CrossRefGoogle Scholar
  18. Karmakar R, Banerjee A, Datta S, Chatterjee M (1999) Influence of cadmium intoxication on hepatic lipid peroxidation, glutathione level, and glutathione S-transferase and gamma-glutamyl transpeptidase activities: correlation with chromosome aberrations in bone marrow cells. J Environ Pathol Toxicol Oncol 18:277–287Google Scholar
  19. Kim J, Shin JR, Koo TH (2009) Heavy metal distribution in some wild birds from Korea. Arch Environ Contam Toxicol 56:317–324. doi: 10.1007/s00244-008-9180-z CrossRefGoogle Scholar
  20. Kumar P, Prasad Y, Patra A, Swarup D (2007) Levels of cadmium and lead in tissues of freshwater fish (Clarias batrachus L.) and chicken in western UP (India). Bull Environ Contam Toxicol 79:396–400. doi: 10.1007/s00128-007-9263-y CrossRefGoogle Scholar
  21. Larregle EV, Varas SM, Oliveros LB, Martinez LD, Antón R, Marchevsky E, Giménez MS (2008) Lipid metabolism in liver of rat exposed to cadmium. Food Chem Toxicol 46:1786–1792. doi: 10.1016/j.fct.2008.01.018 CrossRefGoogle Scholar
  22. Le Maho Y, Vu Van Kha H, Koubi H, Dewasmes G, Girard J, Ferre P, Cagnard M (1981) Body composition, energy expenditure, and plasma metabolites in long-term fasting geese. Am J Physiol Endocrinol Metab 241:342–354Google Scholar
  23. Lucia M, André JM, Bernadet MD, Gontier K, Guy G, Davail S (2008) Concentrations of metals (zinc, copper, cadmium, and mercury) in three domestic ducks in France: pekin, muscovy, and mule ducks. J Agric Food Chem 56:281–288. doi: 10.1021/jf072523x CrossRefGoogle Scholar
  24. Mayack LA, Bush PB, Fletcher OJ, Page RK, Fendley TT (1981) Tissue residues of dietary cadmium in wood ducks. Arch Environ Contam Toxicol 10:637–645. doi: 10.1007/BF01054886 CrossRefGoogle Scholar
  25. Merkel M, Eckel RH, Goldberg IJ (2002) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43:1997–2006. doi: 10.1194/jlr.R200015-JLR200 CrossRefGoogle Scholar
  26. Pierron F, Baudrimont M, Bossy A, Bourdineaud JP, Brèthes D, Elie P, Massabuau JC (2007) Impairment of lipid storage by cadmium in the European eel (Anguilla anguilla). Aquat Toxicol 81:304–311. doi: 10.1016/j.aquatox.2006.12.014 CrossRefGoogle Scholar
  27. Pilo B, George JC (1983) Diurnal and seasonal variation in liver glycogen and fat in relation to metabolic status of liver and m. pectoralis in the migratory starling, Sturnus roseus, wintering in India. Comp Biochem Physiol A Comp Physiol 74:601–604CrossRefGoogle Scholar
  28. Revis NW, Major TC, Horton CY (1980) The effects of calcium, magnesium, lead, or cadmium on lipoprotein metabolism and atherosclerosis in the pigeon. J Environ Pathol Toxicol 4:293–303Google Scholar
  29. Rho HK, Park J, Suh JH, Kim JB (2005) Transcriptional regulation of mouse 6-phosphogluconate dehydrogenase by ADD1/SREBP1c. Biochem Biophys Res Commun 332:288–296. doi: 10.1016/j.bbrc.2005.04.120 CrossRefGoogle Scholar
  30. Rodrigue J, Champoux L, Leclair D, Duchesne JF (2007) Cadmium concentrations in tissues of willow ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta) in Nunavik, Northern Québec. Environ Pollut 147:642–647. doi: 10.1016/j.envpol.2006.10.017 CrossRefGoogle Scholar
  31. Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152. doi: 10.1016/j.cbi.2008.09.011 CrossRefGoogle Scholar
  32. Rollin X, Médale F, Gutieres S, Blanc D, Kaushik SJ (2003) Short- and long-term nutritional modulation of acetyl-CoA carboxylase activity in selected tissues of rainbow trout (Oncorhynchus mykiss). Br J Nutr 89:803–810. doi: 10.1079/BJN2003844 CrossRefGoogle Scholar
  33. Rous S, Lüthi L (1968) Respective roles of NADH and NADPH in the synthesis of fatty acids. Helv Physiol Pharmacol Acta 26:243–246Google Scholar
  34. Scheuhammer AM, Templeton DM (1990) Metallothionein production: similar responsiveness of avian liver and kidney to chronic cadmium administration. Toxicology 60:151–159. doi: 10.1016/0300-483X(90)90169-H CrossRefGoogle Scholar
  35. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336. doi: 10.1016/0891-5849(94)00159-H CrossRefGoogle Scholar
  36. Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579. doi: 10.1146/annurev.bi.52.070183.002541 CrossRefGoogle Scholar
  37. Wang Y, Fang J, Leonard SS, Krishna Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443. doi: 10.1016/j.freeradbiomed.2004.03.010 CrossRefGoogle Scholar
  38. Wayland M, Smits JE, Gilchrist HG, Marchant T, Keating J (2003) Biomarker responses in nesting, common eiders in the Canadian arctic in relation to tissue cadmium, mercury and selenium concentrations. Ecotoxicology 12:225–237. doi: 10.1023/A:1022506927708 CrossRefGoogle Scholar
  39. Weinstock PH, Levak-Frank S, Hudgins LC, Radner H, Friedman JM, Zechner R, Breslow JL (1997) Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc Natl Acad Sci USA 94:10261–10266CrossRefGoogle Scholar
  40. Zechner R (1997) The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr Opin Lipidol 8:77–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Magali Lucia
    • 1
  • Jean-Marc André
    • 1
  • Patrice Gonzalez
    • 2
  • Magalie Baudrimont
    • 2
  • Marie-Dominique Bernadet
    • 3
  • Karine Gontier
    • 1
  • Régine Maury-Brachet
    • 2
  • Gérard Guy
    • 3
  • Stéphane Davail
    • 1
  1. 1.IPREM-EEM (Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, Equipe Environnement et Microbiologie), UMR 5254, IUT des Pays de l’AdourMont de Marsan CedexFrance
  2. 2.UMR 5805 EPOC, Team GEMAUniversité Bordeaux 1 and CNRSArcachonFrance
  3. 3.INRABenquetFrance

Personalised recommendations