, Volume 18, Issue 8, pp 974–982 | Cite as

Juvenile sea bass (Dicentrarchus labrax L.) enzymatic and non-enzymatic antioxidant responses following 17β-estradiol exposure

  • Iqbal Ahmad
  • Vera Lúcia Maria
  • Mário Pacheco
  • Maria Ana Santos


In the context of 17β-estradiol (E2) as an environmental contaminant, this study was designed to test the hypothesis whether it can modulate antioxidant defenses in Dicentrarchus labrax, taking gills as the target organ. Enzymatic (GPX−glutathione peroxidase; CAT-catalase; GR-glutathione reductase; GST-glutathione S-transferase) and non-enzymatic antioxidants (NP-SH-non protein thiols; GSHt-total glutathione) were measured following 10-day exposure to E2 in two different ways: water diluted (WD, 200 or 2,000 ng/L) and intraperitoneally injected (IP, 0.5 or 5 mg/kg). WD exposure caused a single alteration—CAT increase, whereas IP exposure decreased all the enzymatic antioxidants. Similarly, NP-SH and GSHt were reduced by IP exposure. Thus, different E2 exposure routes determined clear differences on the assessed responses. Despite gills close contact with water, their defenses were not strongly affected in WD experiment. Differently, IP injected fish showed an overall decrease in both enzymatic and non-enzymatic antioxidants, more pronounced at the highest concentration, pointing out the E2 oxidative stress inducing potential in fish.


Juvenile Dicentrarchus labrax L. Oxidative stress Gills antioxidants 17β-Estradiol 



The financial supports from FCT (Government of Portugal) provided through POCI/MAR/61195/2004 SFRH/ BPD/ 34326/ 2006, SFRH/ BPD/ 26970/ 2006 and by the Aveiro University Research Institute/CESAM are gratefully acknowledged.


  1. Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater fish (Channa punctatus B.) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1523:37–48Google Scholar
  2. Ahmad I, Pacheco M, Santos MA (2003) Naphthalene-induced differential tissue damage association with circulating fish phagocytes induction. Ecotoxicol Environ Saf 54:7–15CrossRefGoogle Scholar
  3. Ahmad I, Pacheco M, Santos MA (2004) Enzymatic and non-enzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol Environ Saf 57:290–302CrossRefGoogle Scholar
  4. Anderson MJ, Hinton DE (1996) Cytochrome P4501A1 inducing compounds modulate 17β-estradiol induced responses in fish: effect on liver synthesis of vitellogenin. Mar Environ Res 42:173–174CrossRefGoogle Scholar
  5. Arukwe A, Knudsen FR, Goksøyr A (1997) Fish zona radiata (Eggshell) protein: a sensitive biomarker for environmental estrogens. Environ Health Perspect 105:418–422CrossRefGoogle Scholar
  6. Baba T, Shimizu T, Suzuki Y, Ogawara M, Isono K, Koseki H, Kurosawa H, Shirasawa T (2005) Estrogen, insulin and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice. J Biol Chem 280:16417–16426CrossRefGoogle Scholar
  7. Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365CrossRefGoogle Scholar
  8. Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated treatment plants and in receiving river water. Environ Sci Technol 34:5059–5066CrossRefGoogle Scholar
  9. Bowman CJ, Kroll KJ, Hemmer MJ, Folmar LC, Denslow ND (2000) Estrogen-induced vitellogenin mRNA and protein in Sheepshead Minnow (Cyprinodon variegatus). Gen Comp Endocrinol 120:300–313CrossRefGoogle Scholar
  10. Carrera EP, López AG, Río MP, Rodríguez GM, Solé M, Mancera JM (2007) Effects of 17β-estradiol and 4-nonylphenol on osmoregulation and hepatic enzymes in Gilthead Sea bream (Sparus auratus). Comp Biochem Physiol Part C 145:210–217Google Scholar
  11. Céspedes R, Petrovic M, Raldúa D, Saura U, Piña B, Lacorte S et al (2004) Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC-ESI-MS. Anal Bioanal Chem 378:697–708CrossRefGoogle Scholar
  12. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284Google Scholar
  13. Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196CrossRefGoogle Scholar
  14. Dafre AL, Medeiros ID, Muller IC, Ventura EC, Bainy AC (2004) Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel Perna perna exposed to lead and paraquat. Chem Biol Interact 149:97–105CrossRefGoogle Scholar
  15. Day BW, Tyurin VA, Tyurina YY, Liu M, Facey JA, Carta G, Kisin ER, Dubey RK, Kagan VE (1999) Peroxidase-catalyzed pro-versus antioxidant effects of 4-hydroxytamoxifen: enzyme specificity and biochemical sequelae. Chem Res Toxicol 12:28–37CrossRefGoogle Scholar
  16. Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167CrossRefGoogle Scholar
  17. Fürhacker M, Breithofer A, Jungbauer A (1999) 17β-estradiol: behaviour during waste water analyses. Chemosphere 39:1903–1909CrossRefGoogle Scholar
  18. Gagné F, Blaise C, Andre C (2006) Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol Environ Saf 64:329–336CrossRefGoogle Scholar
  19. Gornall AC, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766Google Scholar
  20. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  21. Imai S, Koyama J, Fujii K (2005) Effects of 17β-estradiol on the reproduction of Java-medaka (Oryzias javanicus), a new test fish species. Mar Pollut Bull 51:708–714CrossRefGoogle Scholar
  22. Jones DP, Maellaro E, Jiang S, Slater AG, Orrenius S (1995) Effects of N-acetyl-l-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. Immunol Let 45:205–209CrossRefGoogle Scholar
  23. Lackner R (1998) Oxidative stress in fish by environmental pollutants. In: Braunbeck TD, Hinton E, Streit B (eds) Fish ecotoxicology. Birkhauser, Basel, pp 203–224Google Scholar
  24. Lacort M (1993) Estradiol-induced effects on glutathione metabolism in rat hepatocytes. J Biochem 113:563–567Google Scholar
  25. Lapointe J, Kimmins S, MacLaren LA, Bilodeau J (2005) Estrogen selectively up-regulates the phospholipid hydroperoxide glutathione peroxidise (PHGPx) in the oviducts. Endocrinol 146:2583–2592CrossRefGoogle Scholar
  26. Li KM, Todorovic R, Devanesan P, Higginbotham S, Kofeler H, Ramanathan R et al (2004) Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3, 4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 25:289–297CrossRefGoogle Scholar
  27. Maria VL, Ahmad I, Santos MA (2008) Juvenile sea bass (Dicentrarchus labrax L.) DNA strand breaks and lipid peroxidation response following 17β-estradiol two mode of exposures. Environ Int 34:23–29CrossRefGoogle Scholar
  28. Markides CSA, Roy D, Liehr JG (1998) Concentration dependence of prooxidant and antioxidant properties of catecholestrogens. Arch Biochem Biophys 360:105–112CrossRefGoogle Scholar
  29. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760CrossRefGoogle Scholar
  30. Mohandas J, Marshall JJ, Duggins GG, Horvath JS, Tiller D (1984) Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res 44:5086–5091Google Scholar
  31. Pacheco M, Santos MA (1998) Induction of liver EROD and erythrocytic nuclear abnormalities by cyclophosphamide and PAHs in Anguilla anguilla L. Ecotoxicol Environ Saf 40:71–76CrossRefGoogle Scholar
  32. Pait AS, Nelson JO (2003) Vitellogenesis in male Fundulus heteroclitus (killifish) induced by selected estrogenic compounds. Aquat Toxicol 64:331–342CrossRefGoogle Scholar
  33. Parvez S, Raisuddin S (2006) Copper modulates non-enzymatic antioxidants in the freshwater fish Channa punctata (Bloch) exposed to deltamethrin. Chemosphere 62:1324–1332CrossRefGoogle Scholar
  34. Parvez S, Sayeed I, Pandey S, Ahmad A, Hafeez B, Haque R, Ahmad I, Raisuddin S (2003) Regulatory role of copper on non-enzymatic antioxidants in freshwater fish Channa punctatus (Bloch.). Biol Trace Elem Res 93:237–248CrossRefGoogle Scholar
  35. Perry SF (1997) The chloride cell: structure and functions in the gill of freshwater fishes. Annu Rev Physiol 59:325–347CrossRefGoogle Scholar
  36. Pickford KA, Thomas-Jones RE, Wheals B, Tyler CR, Sumpter JP (2003) Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquat Toxicol 65:267–279CrossRefGoogle Scholar
  37. Pojana G, Gomiero A, Jonkers N, Marcomini A (2007) Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int 33:929–936CrossRefGoogle Scholar
  38. Rand GM (1995) Fundamentals of aquatic toxicology. In: Effects, environmental fate and risk assessment, 2nd edn. Taylor and Francis, Washington, pp 493–521Google Scholar
  39. Santos MA, Pacheco M, Ahmad I (2004) Anguilla anguilla L. antioxidants responses to in situ bleached kraft pulp mill effluent outlet exposure. Environ Int 30:301–308CrossRefGoogle Scholar
  40. Santos MA, Pacheco M, Ahmad I (2006) Responses of European eel (Anguilla anguilla L.) circulating phagocytes to an in situ closed pulp mill effluent exposure and its association with organ-specific peroxidative damage. Chemosphere 63:794–801CrossRefGoogle Scholar
  41. Seacat AM, Kuppusamy P, Zweir JD, Yager ESR (1997) Identification of free radicals formed from the oxidation of catechol estrogen by Cu2+. Arch Biochem Biophys 347:3882–3885CrossRefGoogle Scholar
  42. Sedlak J, Lindsay HR (1968) Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissues with Ellman’s reagent. Anal Biochem 25:192–205CrossRefGoogle Scholar
  43. Solé M, Porte C, Barceló D (2000) Vitellogenin induction and other biochemical responses in carp Cyprinus carpio after experimental injection with 17α-ethynylestradiol. Arch Environ Contam Toxicol 38:494–500CrossRefGoogle Scholar
  44. Teles M, Gravato C, Pacheco M, Santos MA (2004) Juvenile sea bass biotransformation, genotoxic and endocrine responses to β-naphthoflavone, 4-nonylphenol and 17 β-estradiol individual and combined exposures. Chemosphere 57:147–158CrossRefGoogle Scholar
  45. Teles M, Pacheco M, Santos MA (2005) Sparus aurata L. liver EROD and GST activities, plasma cortisol, lactate, glucose and erythrocytic nuclear abnormalites following short-term exposure either to 17β-estradiol (E2) or E2 combined with 4-nonylphenol. Sci Total Environ 336:57–69CrossRefGoogle Scholar
  46. Teles M, Pacheco M, Santos MA (2006) Biotransformation, stress and genotoxic effects of 17β-estradiol in juvenile sea bass (Dicentrarchus labrax L.). Environ Int 32:470–477CrossRefGoogle Scholar
  47. Teles M, Pacheco M, Santos MA (2007) Endocrine and metabolic responses of Anguilla anguilla L. caged in a freshwater-wetland (Pateira de Fermentelos-Portugal). Sci Total Environ 372:562–570CrossRefGoogle Scholar
  48. Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem 27:502–522CrossRefGoogle Scholar
  49. Vaccaro E, Meucci V, Intorre L, Soldani G, Di Bello D et al (2005) Effects of 17 β-estradiol, 4-nonylphenol and PCB on the estrogenic activity and phase 1 and 2 biotransformation enzymes in male sea bass (Dicentrarchus labrax). Aquat Toxicol 75:293–305CrossRefGoogle Scholar
  50. Vigano L, Arilloi A, Falugi C, Melodia F, Polesello S (2001) Biomarkers of exposure and effect in flounder (Platichthys flesus) exposed to sediments of the Adriatic sea. Mar Pollut Bull 42:887–894CrossRefGoogle Scholar
  51. Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 50:335–355. Google Scholar
  52. Wang MY, Liehr JG (1995) Lipid hydroperoxide-induced endogenous DNA adducts in hamsters: Possible mechanism of lipid hydroperoxide-mediated carcinogenesis. Arch Biochem Biophys 316:38–46CrossRefGoogle Scholar
  53. Ying GG, Kookana RS, Ru Y (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28:545–551CrossRefGoogle Scholar
  54. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Iqbal Ahmad
    • 1
  • Vera Lúcia Maria
    • 2
  • Mário Pacheco
    • 1
  • Maria Ana Santos
    • 1
  1. 1.CESAM & Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.CIMA, Faculty of Marine and Environmental SciencesUniversity of AlgarveFaroPortugal

Personalised recommendations