Skip to main content
Log in

Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Ecotoxicological models generally have large data requirements and are frequently based on existing information from diverse sources. Standardizing data for toxicological models may be necessary to reduce extraneous variation and to ensure models reflect intrinsic relationships. However, the extent to which data standardization is necessary remains unclear, particularly when data transformations are used in model development. An extensive acute toxicity database was compiled for aquatic species to comprehensively assess the variation associated with acute toxicity test type (e.g., flow-through, static), reporting concentrations as nominal or measured, and organism life stage. Three approaches were used to assess the influence of these factors on log-transformed acute toxicity: toxicity ratios, log-linear models of factor groups, and comparison of interspecies correlation estimation (ICE) models developed using either standardized test types or reported concentration type. In general, median ratios were generally less than 2.0, the slopes of log-linear models were approximately one for well-represented comparisons, and ICE models developed using data from standardized test types or reported concentrations did not differ substantially. These results indicate that standardizing test data by acute test type, reported concentration type, or life stage may not be critical for developing ecotoxicological models using large datasets of log-transformed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asfaw A, Ellersieck MR, Mayer FL (2003) Interspecies correlation estimations (ICE) for acute toxicity to aquatic organisms and wildlife. II. User manual and software. United States Environmental Protection Agency, Washington EPA/600/R-03/106

    Google Scholar 

  • ASTM (1980) Practice for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. American society for test and materials, Philadelphia, pp 729–780

    Google Scholar 

  • ASTM (2007) Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. American society for test and materials, Philadelphia, pp 729–796

    Google Scholar 

  • Barron MG, Raimondo S, Russom C, Vivian DN, Yee SH (2008) Accuracy of chronic aquatic toxicity estimates determined from acute toxicity data and two time–response models. Environ Toxicol Chem 27:2196–2205. doi:10.1897/08-004.1

    Article  CAS  Google Scholar 

  • Bodar C, de Bruijn J, Vermeire T, van der Zandt P (2002) Trends in risk assessment of chemicals in the European Union. Hum Ecol Risk Assess 8:1825–1843. doi:10.1080/20028091056881

    Article  Google Scholar 

  • Bradury SP, Feijtel TC, van Leeuwen CJ (2004) Meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Technol 38:463A–470A. doi:10.1021/es040675s

    Article  Google Scholar 

  • Buckler DR, Mayer FL, Ellersieck MR, Asfaw A (2003) Evaluation of minimum data requirements for acute toxicity value extrapolation. US Environmental Protection Agency Report. No. EPA/600/R-03/104, Washington

  • Buckler DR, Mayer FL, Ellersieck MR, Asfaw A (2005) Acute toxicity value extrapolation with fish and aquatic invertebrates. Arch Environ Contam Toxicol 49:546–558. doi:10.1007/s00244-004-0151-8

    Article  CAS  Google Scholar 

  • De Zwart D (2002) Observed regularities in species sensitivity distributions for aquatic species. In: Posthuma L, Suter GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton, pp 133–154

    Google Scholar 

  • Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Mayer FL (2006) Interspecies correlation estimates predict protective environmental concentrations. Environ Sci Technol 40:3102–3111. doi:10.1021/es051738p

    Article  CAS  Google Scholar 

  • Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Raimondo S, Barron MG (2008) Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Environ Sci Technol 42:3076–3083. doi:10.1021/es702302e

    Article  CAS  Google Scholar 

  • Fairbrother A (2008) Risk management safety factor. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology: ecotoxicology, vol 4. Elsevier, Amsterdam, pp 3062–3068

    Google Scholar 

  • Fisher SW, Dabrowska H, Waller DL, Babcock-Jackson L, Zhang X (1994) Sensitivity of zebra mussel (Dreissena polymorpha) life stages to candidate molluscicides. J Shellfish Res 13:373–377

    Google Scholar 

  • Froese R, Pauly D (2008) FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2008). Accessed 10 Oct 2008

  • Gaikowski MP, Hamilton SJ, Buhl KJ, McDonald SF, Summers CH (1996) Acute toxicity of firefighting chemical formulations to four life stages of fathead minnow. Ecotoxicol Environ Saf 34:252–263. doi:10.1006/eesa.1996.0070

    Article  CAS  Google Scholar 

  • Gerhardt A (1992) Acute toxicity of Cd in stream invertebrates in relation to pH and test design. Hydrobiologia 239:93–100. doi:10.1007/BF00012575

    Article  CAS  Google Scholar 

  • Hedtke SF, West CW, Allen KN, Norberg-King TJ, Mount DI (1986) Toxicity of pentachlorophenol to aquatic organisms under naturally varying and controlled environmental conditions. Environ Toxicol Chem 5:531–542. doi:10.1897/1552-8618(1986)5[531:TOPTAO]2.0.CO;2

    Article  CAS  Google Scholar 

  • Hutchinson TH, Solbe J, Kloepper-Sams PJ (1998) Analysis of the Ecetoc aquatic toxicity (EAT) database III–Comparative toxicity of chemical substances to different life stages of aquatic organisms. Chemosphere 36:129–142. doi:10.1016/S0045-6535(97)10025-X

    Article  CAS  Google Scholar 

  • Kim Y, Jung J, Oh S, Choi K (2008) Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzia latipes. J Environ Sci Health B 43:56–64. doi:10.1080/03601230701735029

    Article  CAS  Google Scholar 

  • Macek KJ, Sleight BHIII (1977) Utility of toxicity tests with embryos and fry of fish in evaluating hazards associated with chronic toxicity of chemicals to fishes. In: Mayer FL, Hamelink JL (eds) Aquatic toxicology and hazard evaluation, ASTM STP 634. American Society for Testing and Materials, Philadelphia, pp 137–146

    Chapter  Google Scholar 

  • Mayer FL, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Publication 160. US Fish and Wildlife Service Resource, Washington

    Google Scholar 

  • Mayer FL, Marking LL, Bills TD, Howe GE (1994) Physicochemical factors affecting toxicity in freshwater: hardness, pH, and temperature. In: Hamelink JL, Bergman HL, Kimberle RA, Landrum PF (eds) A mechanistic understanding of bioavailability. Lewis, Boca Raton, pp 5–22

    Google Scholar 

  • Mayer FL, Ellersieck MR, Krause GF, Sun K, Lee G, Buckler DR (2002) Time–concentration effect models in predicting chronic toxicity from acute toxicity data. In: Crane M, Newman MC, Chapman PF, Fenlon J (eds) Risk assessment with time to event models. Lewis, Boca Raton, pp 39–67

    Google Scholar 

  • McKim JM (1985) Early life stage toxicity tests. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere, Washington, pp 58–95

    Google Scholar 

  • Medina M, Carata C, Telfer T, Baird DJ (2002) Age- and sex-related variation in sensitivity to the pyrethriod cypermethrin in the marine copepod Acartia tonsa Dana. Arch Environ Contam Toxicol 42:17–22. doi:10.1007/s002440010286

    Article  CAS  Google Scholar 

  • Moles A (1998) Sensitivity of ten aquatic species to long-term crude oil exposure. Bull Environ Contam Toxicol 61:102–107. doi:10.1007/s001289900735

    Article  CAS  Google Scholar 

  • NAS (2007) Toxicity testing in the 21st Century: a vision and a strategy. Final report. National Academies Press, Washington

    Google Scholar 

  • Newman MC, Ownby DR, Mézin LCA, Powell DC, Christensen TRL, Lerberg SB, Anderson BA (2000) Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508–515. doi:10.1897/1551-5028(2000)019<0508:ASSDIE>2.3.CO;2

    Article  CAS  Google Scholar 

  • OECD (1992) OECD guideline for testing of chemicals. Fish, acute toxicity test. OECD TG 203. Organization for Economic Co-operation and Development, Paris

    Book  Google Scholar 

  • Raimondo S, Vivian D, Barron MG (2007a). Web-based interspecies correlation estimation (Web-ICE) for acute toxicity: user manual. Version 1.1. EPA/600/R-07-071. Gulf Breeze. pp 26. http://www.epa.gov/ceampubl/fchain/webice/index.htm. Accessed Sept 2008

  • Raimondo S, Mineau P, Barron MG (2007b) Estimation of chemical toxicity to wildlife species using interspecies correlation models. Environ Sci Technol 41(16):5888–5894. doi:10.1021/es070359o

    Article  CAS  Google Scholar 

  • Raimondo S, Montague BJ, Barron MG (2007c) Determinants of variability in acute-to-chronic toxicity ratios (ACRs) in aquatic invertebrates and fish. Environ Toxicol Chem 26:2019–2023. doi:10.1897/07-069R.1

    Article  CAS  Google Scholar 

  • Raimondo S, Vivian DN, Delos C, Barron MG (2008) Protectiveness of Species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment. Environ Toxicol Chem 27:2599–2607. doi:10.1897/08-157.1

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Sprague JB (1973) The ABC’s of pollutant bioassay using fish. ASTM special technical publication. American Society for Testing and Materials, Philadelphia, pp 6–30

    Google Scholar 

  • USEPA (1986) Quality criteria for water. EPA 440/5-86-001. Washington

  • USEPA (1996a) 1995 Updates: water quality criteria documents for the protection of aquatic life in ambient water. EPA-820-B-96-001. Final Report. Washington

  • USEPA (1996b) Ecological effects test guidelines. OPPTS 850.1075 Fish acute toxicity test, freshwater and marine. Environmental Protection Agency. EPA 712-C-96-118. Washington

  • USEPA (2002) National recommended water quality criteria: 2002. EPA-822-R-02-047. Final Report. Washington

  • USEPA (2007) ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. Available http:/www.epa.gov/ecotox/. Accessed May 2007

  • Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single species and model ecosystem sensitivity: data-base comparison. Environ Toxicol Chem 18:1329–1346. doi:10.1897/1551-5028(1999)018<1329:USSAME>2.3.CO;2

    Article  CAS  Google Scholar 

  • Wang N, Ingersoll CG, Hardesty DK, Ivey CD, Kunz JL, May TW, Dwyer FJ, Roberts AD, Augspurger T, Kane CM, Neves RJ, Barnhart C (2007) Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae). Environ Toxicol Chem 26:2036–2047. doi:10.1897/06-523R.1

    Article  CAS  Google Scholar 

  • Wang B, Yu G, Huang J, Hu H (2008) Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches. Ecotoxicology 17:716–724. doi:10.1007/s10646-008-0220-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sorci Soriano, Marion Marchetto, and Sarah Kell provided invaluable assistance with database quality assurance. Sonya Doten assisted with collection of technical materials. Chuck Stephan reviewed an earlier version of this manuscript. The information in this document has been funded by the US Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This is contribution number 1350 from the Gulf Ecology Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Raimondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 40 kb)

Supplementary material 2 (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raimondo, S., Vivian, D.N. & Barron, M.G. Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting. Ecotoxicology 18, 918–928 (2009). https://doi.org/10.1007/s10646-009-0353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0353-y

Keywords

Navigation