, Volume 18, Issue 7, pp 802–813 | Cite as

Polybrominated diphenyl ether flame retardants in eggs may reduce reproductive success of ospreys in Oregon and Washington, USA

  • Charles J. Henny
  • James L. Kaiser
  • Robert A. Grove
  • Branden L. Johnson
  • Robert J. Letcher


Spatial and temporal assessments and reports of polybrominated diphenyl ether (PBDE) flame retardants in birds remain sparse. In the present study, PBDEs were detected in all 120 osprey (Pandion haliaetus) eggs collected. The eggs were collected from nests along the Columbia, Willamette and Yakima rivers of Oregon (OR) and Washington (WA) and in Puget Sound (WA) between 2002 and 2007. PBDE congeners: 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154 (possible coelution with brominated biphenyl 153 [BB153]), 183, 190 (detected in one egg), 209 (not detected), and BB101 (only detected in 2006 and 2007) and total-α-hexabromocyclododecane (only detected in five eggs) were analyzed for in the egg samples. Eggs from reservoirs in the forested headwaters of the Willamette River (2002) contained the lowest concentrations of ΣPBDEs (geometric mean [range], 98 [55.2–275] ng/g wet weight [ww]), while those from the middle Willamette River (2006) contained the highest (897 [507–1,880] ng/g ww). Concentrations in eggs from the Columbia River progressively increased downstream from Umatilla, OR (River Mile [RM] 286) to Skamokoa, WA (RM 29), which indicated additive PBDE sources along the river. In general, regardless of the year of egg collection, differences in PBDE concentrations reported in osprey eggs along the three major rivers studied (Columbia, Willamette and Yakima) seem to reflect differences in river flow (dilution effect) and the extent of human population and industry (source inputs) along the rivers. PBDE concentrations increased over time at two locations (Seattle, WA; Columbia River, RM 29-84) where temporal patterns could be evaluated. Only during 2006 (on the middle Willamette River, RM 61–157) and 2007 (on the lower Columbia River, RM 29–84) did ΣPBDE concentrations in osprey eggs exceed 1,000 ng/g ww with negative relationships indicated at both locations between productivity and ΣPBDE concentrations in eggs (P = 0.008, P = 0.057). Osprey eggs from Everett, WA contained nearly twice the ΣPBDE concentration (geometric mean 239 vs. 141 ng/g ww, range 124–384 vs. 22.2–819 ng/g ww, P ≤ 0.05) as double-crested cormorant (Phalacrocorax auritus) eggs collected at the same location and time, which is likely due to dietary differences. No significant relationship (all Ps > 0.147) was indicated between PBDE congeners (including ΣPBDEs) and eggshell thickness at the concentrations observed in this study.


Osprey Polybrominated diphenyl ethers Washington Oregon Productivity Double-crested cormorant 



We thank B. Rattner and G. Heinz for providing comments on an earlier version of this manuscript. Lewis Gauthier, Andrei Lezau and Soheila Shahmiri (NWRC, Ottawa) are also thanked for PBDE analysis. The study was funded by US Geological Survey. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.


  1. Blus LJ (1984) DDE in birds’ eggs: comparison of two methods for estimating critical levels. Wilson Bull 96:268–276Google Scholar
  2. Bustness JO, Yoccoz NG, Bangjord G, Polder A, Skaare JU (2007) Temporal trends (1986–2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern Europe. Environ Sci Technol 41:8491–8497. doi: 10.1021/es071581w CrossRefGoogle Scholar
  3. Chen D, Mai B, Song J, Sun Q, Luo Y, Luo X, Zeng EY, Hale RC (2007) Polybrominated diphenyl ethers in birds of prey from northern China. Environ Sci Technol 41:1828–1833. doi: 10.1021/es062045r CrossRefGoogle Scholar
  4. Chen D, LaGuardia MJ, Harvey E, Amaral M, Wohlfort K, Hale RC (2008) Polybrominated diphenyl ethers in peregrine falcon (Falco peregrinus) eggs from the northeastern US. Environ Sci Technol 42:7594–7600. doi: 10.1021/es8010749 CrossRefGoogle Scholar
  5. Darnerud PO (2003) Toxic effects of brominated flame retardants in man and wildlife. Environ Int 29:841–853. doi: 10.1016/S0160-4120(03)00107-7 CrossRefGoogle Scholar
  6. Darnerud PO, Eriksen GS, Jóhannesson T, Larsen PB, Viluksela M (2001) Polybrominated diphenyl ethers: occurrence, dietary exposure and toxicology. Environ Health Perspect 109(Supplement):49–68. doi: 10.2307/3434846 CrossRefGoogle Scholar
  7. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624. doi: 10.1016/S0045-6535(01)00225-9 CrossRefGoogle Scholar
  8. Elliott JE, Wilson LK, Wakeford B (2005) Polybrominated diphenyl ether trends in eggs of aquatic and marine birds from British Columbia, Canada, 1979–2002. Environ Sci Technol 39:5584–5591. doi: 10.1021/es050496q CrossRefGoogle Scholar
  9. Elliott JE, Morrissey CA, Henny CJ, Inzunza ER, Shaw P (2007) Satellite telemetry and prey sampling reveal contaminant sources to Pacific Northwest ospreys. Ecol Appl 17:1223–1233. doi: 10.1890/06-1213 CrossRefGoogle Scholar
  10. Fernie KJ, Shutt JL, Mayne G, Hoffman DJ, Letcher RJ, Drouillard KG, Ritchie IJ (2005) Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius). Toxicol Sci 88:375–383. doi: 10.1093/toxsci/kfi295 CrossRefGoogle Scholar
  11. Fernie KJ, Shutt JL, Letcher RJ, Ritchie JI, Sullivan K, Bird DM (2008) Changes in reproductive courtship behaviors of adult American kestrels (Falco sparverius) exposed to environmentally relevant levels of the polybrominated diphenyl ether mixture, DE-71. Toxicol Sci 102:171–178. doi: 10.1093/toxsci/kfm295 CrossRefGoogle Scholar
  12. Fernie KJ, Shutt JL, Letcher RJ, Ritchie JI, Bird DM (2009) Environmentally relevant concentrations of DE-71 and HBCD alter eggshell thickness and reproductive success of American kestrels (Falco sparverius). Environ Sci Technol 43:2124–2130. doi: 10.1021/es8027346 CrossRefGoogle Scholar
  13. Gauthier LT, Hebert CW, Weseloh DVC, Letcher RJ (2007) Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes. Environ Sci Technol 41:4561–4567. doi: 10.1021/es0630487 CrossRefGoogle Scholar
  14. Gauthier LT, Hebert CE, Weseloh DVC, Letcher RJ (2008) Dramatic changes in the temporal trends of polybrominated diphenyl ethers (PBDEs) in herring gull eggs from the Laurentian Great Lakes: 1982–2006. Environ Sci Technol 42:1524–1530. doi: 10.1021/es702382k CrossRefGoogle Scholar
  15. Grove RA, Henny CJ, Kaiser JL (2009) Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs and estuaries. J Toxicol Environ Health Part B 12:1–20CrossRefGoogle Scholar
  16. Henny CJ, Grove RA, Kaiser JL, Bentley VR (2004) An evaluation of osprey eggs to determine spatial residue patterns and effects of contaminants along the lower Columbia River, USA. In: Chancellor RD, Meyburg B-U (eds) Raptors worldwide. WWGBP and MME, Budapest, Hungary, pp 369–388Google Scholar
  17. Henny CJ, Grove RA, Kaiser JL (2008) Osprey distribution, abundance, reproductive status and contaminant burdens along lower Columbia River, 1997/1998 versus 2004. Arch Environ Contam Toxicol 54:525–534. doi: 10.1007/s00244-007-9041-1 CrossRefGoogle Scholar
  18. Henny CJ, Kaiser JL, Grove RA (2009) PCDDs, PCDFs, PCBs, OC pesticides and mercury in fish and osprey eggs from Willamette River, Oregon (1993, 2001 and 2006) with calculated biomagnifications factors. Ecotoxicology 18:151–173. doi: 10.1007/s10646-008-0268-z CrossRefGoogle Scholar
  19. Herzke D, Berger U, Kallenborn R, Nygard T, Vetter W (2005) Brominated flame retardants and other organobromines in Norwegian predatory bird eggs. Chemosphere 61:441–449. doi: 10.1016/j.chemosphere.2005.01.066 CrossRefGoogle Scholar
  20. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. John Wiley and Sons, New YorkGoogle Scholar
  21. Janák K, Sellström U, Johannson A-K, Becher G, de Wit CA, Lindberg P, Helander B (2008) Enantiomer-specific accumulation of hexabromocyclododecanes in eggs of predatory birds. Chemosphere 73:193–200. doi: 10.1016/j.chemosphere.2007.03.077 CrossRefGoogle Scholar
  22. Jansson B, Andersson R, Asplund L, Litzen K, Nylund K, Sellstrom U, Uvemo UB, Wahlberg C, Wideqvst U, Odsjo T, Olsson M (1993) Chlorinated and brominated persistent organic compounds in biological samples from the environment. Environ Toxicol Chem 12:1163–1174. doi: 10.1897/1552-8618(1993)12[1163:CABPOC]2.0.CO;2 CrossRefGoogle Scholar
  23. Jaspers V, Covaci A, Maervoet J, Dauwe T, Voorspoels S, Schepens P, Eens M (2005) Brominated flame retardants and organochlorine pollutants in eggs of little owls (Athene noctua) from Belgium. Environ Pollut 136:81–88. doi: 10.1016/j.envpol.2004.12.003 CrossRefGoogle Scholar
  24. Johansson A, Sellstrom U, Lindberg P, Bignert A, DeWitt C (2009) Polybrominated diphenyl ether congener patterns, hexabromocyclododecane and brominated biphenyl 153 in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Toxicol Chem 28:9–17. doi: 10.1897/08-142.1 CrossRefGoogle Scholar
  25. Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208. doi: 10.1016/j.chemosphere.2005.12.007 CrossRefGoogle Scholar
  26. Lindberg P, Sellstrom U, Haggberg L, de Wit CA (2004) Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Sci Technol 38:93–96. doi: 10.1021/es034614q CrossRefGoogle Scholar
  27. Lundstedt-Enkel K, Asplund L, Nylund K, Bignert A, Tysklind M, Olsson M, Örberg J (2006) Multivariate data analysis of organochlorines and brominated flame retardants in Baltic Sea guillemot (Uria aalge) egg and muscle. Chemosphere 65:1591–1599. doi: 10.1016/j.chemosphere.2006.03.051 CrossRefGoogle Scholar
  28. McKernan MA, Rattner BA, Hale RC, Ottinger MA (2009) Toxicity of polybrominated diphenyl ethers (DE-71) in chicken (Gallus gallus), mallard (Anas platyrhynchos) and American kestrel (Falco sparverius) embryos and hatchlings. Environ Toxicol Chem 28:1007–1017. doi: 10.1897/08-318.1 CrossRefGoogle Scholar
  29. McKinney MA, Cesh LS, Elliott JE, Williams TD, Garcelon DK, Letcher RJ (2006) Novel brominated and chlorinated contaminants and hydroxylated analogues among North American west coast populations of bald eagles (Haliaeetus leucocephalus). Environ Sci Technol 40:6275–6281. doi: 10.1021/es061061l CrossRefGoogle Scholar
  30. Norstrom RJ, Simon M, Moisey J, Wakeford B, Weseloh DVC (2002) Geographical distribution (2000) and temporal trends (1981–2000) of brominated diphenyl ethers in Great Lakes herring gull eggs. Environ Sci Technol 36:4783–4789. doi: 10.1021/es025831e CrossRefGoogle Scholar
  31. Postupalsky S (1977) A critical review of problems in calculating osprey reproductive success. In: Ogden JC (ed) Transactions No American Osprey Research Conference, Transaction and Proceeding Series No 2, Natl Park Serv, Washington DC, pp 1–11Google Scholar
  32. Rattner BA, McGowan PC, Golden NH, Hatfield JS, Toschik PC, Lukei RF Jr, Hale RC, Schmitz-Alfonso I, Rice CP (2004) Contaminant exposure and reproductive success of osprey (Pandion haliaetus) nesting in Chesapeake Bay regions of concern. Arch Environ Contam Toxicol 47:126–140. doi: 10.1007/s00244-003-3160-0 CrossRefGoogle Scholar
  33. Rayne S, Ikonomou MG, Antcliffe B (2003) Rapidly increasing polybrominated diphenyl ether concentrations in the Columbia River system from 1992–2000. Environ Sci Technol 37:2847–2854. doi: 10.1021/es0340073 CrossRefGoogle Scholar
  34. SAS Institute (2003) SAS user’s guide: statistics, Version 9.1 Edition, SAS Institute Inc., Cary, NCGoogle Scholar
  35. Stickel LF, Wiemeyer SN, Blus LJ (1973) Pesticide residues in eggs of wild birds: adjustment for loss of moisture and lipid. Bull Environ Contam Toxicol 9:193–196. doi: 10.1007/BF01684824 CrossRefGoogle Scholar
  36. Toschik PC, Rattner BA, McGowan PC, Christman MC, Carter DB, Hale RC, Matson CW, Ottinger MA (2005) Effects of contaminant exposure on reproductive success of osprey (Pandion haliaetus) nesting in Delaware River and Bay, USA. Environ Toxicol Chem 24:617–628. doi: 10.1897/04-141R.1 CrossRefGoogle Scholar
  37. Ucán-Marín F, Arukwe A, Mortensen A, Gabrielsen GW, Fox GA, Letcher RJ (2009) Recombinant transthyretin purification and competitive binding with organohalogen compounds in two gull species (Larus argentatus and Larus hyperboreus). Toxicol Sci 107:440–450. doi: 10.1093/toxsci/kfn240 CrossRefGoogle Scholar
  38. Van den Steen E, Eens M, Covaci A, Dirtu AC, Jaspers VLB, Neels H, Pinxten R (2009) An exposure study with polybrominated diphenyl ethers (PBDEs) in female European starlings (Sturnus vulgaris): toxicokinetics and reproductive effects. Environ Pollut 157:430–436. doi: 10.1016/j.envpol.2008.09.031 CrossRefGoogle Scholar
  39. Wiemeyer SN, Bunck CM, Krynitsky AJ (1988) Organochlorine pesticides, polychlorinated biphenyls, and mercury in osprey eggs 1970–1979 and their relationships to shell thinning and productivity. Arch Environ Contam Toxicol 17:767–787. doi: 10.1007/BF01061982 CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Charles J. Henny
    • 1
  • James L. Kaiser
    • 1
  • Robert A. Grove
    • 1
  • Branden L. Johnson
    • 1
  • Robert J. Letcher
    • 2
  1. 1.US Geological SurveyForest and Rangeland Ecosystem Science CenterCorvallisUSA
  2. 2.National Wildlife Research Centre, Environment CanadaCarleton UniversityOttawaCanada

Personalised recommendations