Advertisement

Ecotoxicology

, Volume 18, Issue 5, pp 567–576 | Cite as

Valve movement response of the freshwater clam Corbicula fluminea following exposure to waterborne arsenic

  • Chung-Min Liao
  • Sheng-Feng Jau
  • Chieh-Ming Lin
  • Li-John Jou
  • Chen-Wuing Liu
  • Vivian Hsiu-Chuan Liao
  • Fi-John Chang
Article

Abstract

We developed an inductance-based valvometry technique as a detection system to measure the valve daily activity in freshwater clam Corbicula fluminea in response to waterborne arsenic. Our findings reveal that C. fluminea experiences a valve opening in the absence of arsenic predominantly in the morning hours (03:00–08:00) with a mean daily opening/closing period of 21.32 (95% CI: 20.58–22.05) h. Amplification of daily activity occurred in the presence of arsenic. Behavioral toxicity assays revealed arsenic detection thresholds of 0.60 (95% CI: 0.53–0.66) mg l−1 and 0.35 (95% CI: 0.30–0.40) mg l−1 for response times of 60 and 300 min, respectively. The proposed valve daily activity model was linked with response time-specific Hill dose-response functions to predict valve opening/closing behavior in response to arsenic. The predictive capabilities were verified satisfactory with the measurements. Our results implicate a biomonitoring system by valve daily activity in C. fluminea to identify safe water uses in areas with elevated arsenic.

Keywords

Arsenic Freshwater clam Corbicula fluminea Valve daily activity Toxicology Biomonitor 

Notes

Acknowledgments

The authors acknowledge the National Science Council of Republic of China for financial support under the Grant NSC 95-2313-B-002-052-MY3. We also thank Biosystems Modeling and Control Lab members for assistance with collection of field samples and assays. This work was inspired by the original paper appeared in Environmental Toxicology and Chemistry 22: 914-920 (2003) by Dr. Tran and coworkers.

References

  1. Ait Fdil M, Mouabad A, Outzourhit A, Benhra A, Maarouf A, Pihan JC (2006) Valve movement response of the mussel Mytilus galloprovincialis to metals (Cu, Hg, Cd and Zn) and phosphate effluents from Moroccan Atlantic coast. Ecotoxicol 15:477–486. doi: 10.1007/s10646-006-0083-3 CrossRefGoogle Scholar
  2. APHA (2005) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, WashingtonGoogle Scholar
  3. Chen CJ, Hsu LI, Wang CH, Shih WL, Hsu YH, Tseng MP et al (2005) Biomarkers of exposure, effect, and susceptibility of arsenic–induced health hazards in Taiwan. Toxicol Appl Pharmacol 206:198–206. doi: 10.1016/j.taap.2004.10.023 CrossRefGoogle Scholar
  4. Cherry DS, Soucek DJ (2007) Case study: comparison of Asian clam (Corbicula fluminea) in situ testing to several nontarget test organism response to biocidal dosing at a nuclear power plant. In: Farris JL, van Hassel JH (eds) Freshwater bivalve ecotoxicology. Roca Raton, London, NY, pp 285–310Google Scholar
  5. Dell’Omo M (2002) Behavioural ecotoxicology. Chichester, New York, p 463Google Scholar
  6. Gerhardt A, De Bisthoven LJ, Soares AMV (2005) Evidence for the stepwise stress model: Gambusia holbrooki and Daphnia magna under acid mine drainage and acidified reference water stress. Environ Sci Technol 39:4150–4158. doi: 10.1021/es048589f CrossRefGoogle Scholar
  7. Gerhardt A, de Bisthoven LJ, Schmidt S (2006) Automated recording of vertical negative phototactic behaviour in Daphnia magna Straus (Crustacea). Hydrobiologia 559:433–441. doi: 10.1007/s10750-005-1259-1 CrossRefGoogle Scholar
  8. Huang YK, Lin KH, Chen HW, Chang CC, Liu CW, Yang MH et al (2003) Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food Chem Toxicol 41:1491–1500. doi: 10.1016/S0278-6915(03)00165-0 CrossRefGoogle Scholar
  9. Jou LJ, Liao CM (2006) A dynamic artificial clam (Corbicula fluminea) allows parsimony on-line measurement of waterborne metals. Environ Pollut 144:172–183. doi: 10.1016/j.envpol.2005.12.032 CrossRefGoogle Scholar
  10. Lamm SH, Engel A, Penn CA, Chen R, Feinleib M (2006) Arsenic cancer risk confounder in southwest Taiwan data set. Environ Health Perspect 114:1077–1082CrossRefGoogle Scholar
  11. Liao CM, Chen BC, Singh S, Lin MC, Han BC (2003) Acute toxicity and bioaccumulation of arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environ Toxicol 18:252–259. doi: 10.1002/tox.10122 CrossRefGoogle Scholar
  12. Liao CM, Jou LJ, Chen BC (2005) Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals. Environ Pollut 135:41–52. doi: 10.1016/j.envpol.2004.10.015 CrossRefGoogle Scholar
  13. Lin MC, Liao CM, Liu CW, Singh S (2001) Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from blackfoot disease area in Taiwan. Bull Environ Contam Toxicol 67:91–97Google Scholar
  14. Lin MC, Lin HY, Cheng HH, Chen YC, Liao CM, Shao KT (2005) Risk assessment of arsenic exposure from consumption of cultured milkfish, Chanos chanos (Forsskål), from the arsenic-contaminated area in southwestern Taiwan. Bull Environ Contam Toxicol 75:637–644. doi: 10.1007/s00128-005-0800-2 CrossRefGoogle Scholar
  15. Liu CW, Liang CP, Huang FM, Hsueh YM (2006) Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Sci Total Environ 361:57–66. doi: 10.1016/j.scitotenv.2005.06.005 CrossRefGoogle Scholar
  16. Liu CW, Liang CP, Lin KH, Jang CS, Wang SW, Huang YK et al (2007) Bioaccumulation of arsenic compounds in aquacultural clams (Meretrix lusoria) and assessment of potential carcinogenic risk to human health by ingestion. Chemosphere 69:128–134. doi: 10.1016/j.chemosphere.2007.04.038 CrossRefGoogle Scholar
  17. Newton TJ, Cope WG (2007) Biomarker responses of unionid mussels to environmental contaminants. In: Farris JL, van Hassel JH (eds) Freshwater bivalve ecotoxicology. Roca Raton, London, pp 257–284Google Scholar
  18. Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. J Exp Biol 206:4167–4178. doi: 10.1242/jeb.00656 CrossRefGoogle Scholar
  19. Sluyts H, van Hoof F, Cornet A, Paulussen J (1996) A dynamic new alarm system for use in biological early warning system. Environ Toxicol Chem 15:1317–1323. doi: 10.1897/1551-5028(1996)015<1317:ADNASF>2.3.CO;2 CrossRefGoogle Scholar
  20. Tran D, Ciret P, Ciutat A, Durrieu G, Massabuau JC (2003) Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environ Toxicol Chem 22:914–920. doi: 10.1897/1551-5028(2003)022<0914:EOPALO>2.0.CO;2 CrossRefGoogle Scholar
  21. Tran D, Fournier E, Durrieu G, Massabuau JC (2004) Copper detection in the freshwater clam Corbicula fluminea: optimum valve closure response. Aquat Toxicol 66:333–343. doi: 10.1016/j.aquatox.2004.01.006 CrossRefGoogle Scholar
  22. Tran D, Fournier E, Durrieu G, Massabuau JC (2007) Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: integration of time and water metal concentration changes. Environ Toxicol Chem 26:1545–1551. doi: 10.1897/06-390R1.1 CrossRefGoogle Scholar
  23. van der Schalie WH, Sheld TR, Knechtges PL, Widder MW (2001) Using higher organisms in biological early warning systems for real-time toxicity detection. Biosens Bioelectron 16:457–465. doi: 10.1016/S0956-5663(01)00160-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chung-Min Liao
    • 1
  • Sheng-Feng Jau
    • 1
  • Chieh-Ming Lin
    • 1
  • Li-John Jou
    • 2
  • Chen-Wuing Liu
    • 1
  • Vivian Hsiu-Chuan Liao
    • 1
  • Fi-John Chang
    • 1
  1. 1.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC
  2. 2.Department of Biomechatronic EngineeringNational Ilan UniversityIlanTaiwan, ROC

Personalised recommendations