, Volume 18, Issue 2, pp 211–224 | Cite as

Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests

  • René P. A. van Wijngaarden
  • Ian Barber
  • Theo C. M. Brock


The sensitivity of a range of freshwater lentic invertebrates to gamma-cyhalothrin (GCH), a single enantiomer of the synthetic pyrethroid lambda-cyhalothrin, was assessed in single species laboratory tests and an outdoor multi-species ecosystem test. The most sensitive species in the laboratory single species tests with GCH was Chaoborus obscuripes (96 h EC50: 3.8 ng/l). The species sensitivity distribution curve, based on the laboratory 96 h EC50 acute toxicity data for eight species, gave a median HC5 value for GCH of 2.12 ng/l. The NOECcommunity derived from the multi-species ecosystem test was 5 ng/l, and the insects Chaoborus sp. and Caenis sp. were identified as the most sensitive species. The results indicate that the median HC5, based on eight species selected to include those known to be sensitive to pyrethroids, provided a good estimation of the NOECcommunity for GCH. Furthermore, the results for GCH indicated that the endpoints typically used in higher-tier risk assessments for pesticides in Europe (HC5 and NOECcommunity) were consistent with expectations when compared to the equivalent endpoints for the racemate LCH.


Pyrethroid Gamma-cyhalothrin Species sensitivity distribution Aquatic microcosm 



We would like to acknowledge the contributions of Steven Crum, John Deneer, Ariënne Matser, René Aalderink, Harry Boonstra, Marie-Claire Boerwinkel, Dick Belgers, Jan Bovenschen in conducting the microcosm study, and Paul van den Brink for the statistical analysis. The authors thank three anonymous reviewers for their critical comments on an earlier draft of this paper. This work was funded by Dow AgroSciences.


  1. Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18. doi: 10.1006/eesa.1999.1869 CrossRefGoogle Scholar
  2. Ali I, Gupta VK, Aboul-Enein HY (2003) Chirality: a challenge for the environmental scientists. Curr Sci 84:152–156Google Scholar
  3. Brock TCM, Van Wijngaarden RPA, Van Geest GJ (2000) Ecological risks of pesticides in freshwater ecosystems Part 2: insecticides. Wageningen, Alterra, Green World Research. Alterra-Report 089, 142 ppGoogle Scholar
  4. Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European legislation. Integr Environ Assess Manag 2:e20–e46. doi: 10.1897/1551-3793(2006)2[e20:AROPEP]2.0.CO;2 CrossRefGoogle Scholar
  5. Campbell PJ, Arnold DJS, Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ, Streloke M (1999) Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP). SETAC-Europe, Brussels (BE), 179 ppGoogle Scholar
  6. Clark JM, Brooks MW (1989) Neurotoxicology of pyrethroids: single or multiple mechanisms of action. Environ Toxicol Chem 8:361–372. doi: 10.1897/1552-8618(1989)8[361:NOPSOM]2.0.CO;2 CrossRefGoogle Scholar
  7. Cook WL, Olberding EL (2004) The rate of release of gamma-cyhalothrin from a microencapsulated formulation. Pytech unpublished report CR 225 2003-01Google Scholar
  8. Drent J, Kersting K (1993) Experimental ditches for research under natural conditions. Water Res 27:1497–1500. doi: 10.1016/0043-1354(93)90031-C CrossRefGoogle Scholar
  9. European Commission (2002) Health & consumer protection directorate-general, 2002. Guidance document on aquatic ecotoxicology in the context of the directive 91/414/EEC, working document SANCO/3268/2001 rev.4 (final), 2002Google Scholar
  10. Farmer D, Hill IR, Maund SJ (1995) A comparison of the fate and effects of 2 pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms. Ecotoxicology 4:219–244. doi: 10.1007/BF00116342 CrossRefGoogle Scholar
  11. Hill IR, Shaw JL, Maund SJ (1994) Review of aquatic field tests with pyrethroid insecticides. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton, FL, pp 249–271Google Scholar
  12. Hommen U, Düllmer U, Veith D (1994) A computer program to evaluate plankton data from freshwater field tests. In: Hill IR, Heimbach F, Leeuwangh P, Matthiesen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton, FL, pp 503–513Google Scholar
  13. Leistra M, Zweers AJ, Warinton J, Crum SJH, Hand LH, Beltman WHJ, Maund SJ (2003) Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Manag Sci 60:75–84. doi: 10.1002/ps.780 CrossRefGoogle Scholar
  14. Liu W, Gan J, Schlenk D, Jury A (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA 102:701–706. doi: 10.1073/pnas.0408847102 CrossRefGoogle Scholar
  15. Machado MW (2001) XDE-225 and lambda-cyhalothrin: comparative toxicity to daphnids (Daphnia magna) under static-renewal conditions. Dow Chemical Company, unpublished report No. 011055Google Scholar
  16. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi: 10.1897/04-025R.1 CrossRefGoogle Scholar
  17. Marino TA, Rick DL (2000) XR-225: an acute toxicity study with the daphnia, Daphnia magna Straus. The Dow Chemical Co., unpublished report No. 001075Google Scholar
  18. Marino TA, Rick DL (2001a) XR-225: an acute toxicity study with the bluegill sunfish, Lepomis macrochirus, Rafinesque. The Dow Chemical Co., unpublished report No. 001074(A)Google Scholar
  19. Marino TA, Rick DL (2001b) XR-225 and lambda-cyhalothrin: an acute toxicity comparison study with the bluegill sunfish, Lepomis macrochirus, Rafinesque. The Dow Chemical Co., unpublished report No. 001074Google Scholar
  20. Posthuma L, Suter GW, Traas TP (eds) (2002) The use of species sensitivity distributions in ecotoxicology. Lewis, Boca RatonGoogle Scholar
  21. Roessink I, Arts GH, Belgers DM, Bransen F, Maund SJ, Brock TCM (2005) Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. Environ Toxicol Chem 24:1684–1696. doi: 10.1897/04-130R.1 CrossRefGoogle Scholar
  22. Schroer AFW, Belgers D, Brock TCM, Matser A, Maund SJ, Van den Brink PJ (2004) Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates. Arch Environ Contam Toxicol 46:324–335. doi: 10.1007/s00244-003-2315-3 CrossRefGoogle Scholar
  23. Van den Brink PJ, Ter Braak CJF (1997) Ordination of responses to toxic stress in experimental ecosystems. Toxicol Ecotoxicol News 4:174–178Google Scholar
  24. Van den Brink PJ, Ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis. Aquat Ecol 32:161–178. doi: 10.1023/A:1009944004756 Google Scholar
  25. Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of a biological community to stress. Environ Toxicol Chem 18:138–148. doi:10.1897/1551-5028(1999)018<0138:PRCAOT>2.3.CO;2Google Scholar
  26. Van den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban®4E (a.i. chlorpyrifos) in outdoor experimental ditches. II. Invertebrate community responses. Environ Toxicol Chem 15:1143–1153. doi:10.1897/1551-5028(1996)015<1143:EOTIDA>2.3.CO;2Google Scholar
  27. Van den Brink PJ, Hattink J, Bransen F, Van Donk E, Brock TCM (2000) Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat Toxicol 48:251–264. doi: 10.1016/S0166-445X(99)00037-5 CrossRefGoogle Scholar
  28. Van Vlaardingen P, Traas TP (2002) ETX-2000, version 1.403. A program to calculate risk limits and potentially affected fraction based on normal species sensitivity distributions. RIVM, Bilthoven, The NetherlandsGoogle Scholar
  29. Van Wijngaarden RPA, Van den Brink PJ, Crum SJH, Oude Voshaar JH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: I comparison of short-term toxicity between the laboratory and field. Environ Toxicol Chem 15:1133–1142. doi:10.1897/1551-5028(1996)015<1133:EOTIDA>2.3.CO;2CrossRefGoogle Scholar
  30. Van Wijngaarden RPA, Brock TCM, Van den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems. Ecotoxicology 14:353–378. doi: 10.1007/s10646-004-6371-x CrossRefGoogle Scholar
  31. Van Wijngaarden RPA, Brock TCM, Van den Brink PJ, Glystra R, Maund SJ (2006) Ecological effects of spring and late summer applications of lambda-cyhalothrin in freshwater microcosms. Arch Environ Contam Toxicol 50:220–239. doi: 10.1007/s00244-004-0249-z CrossRefGoogle Scholar
  32. Wang W, Cai DJ, Shan ZJ, Chen ZL, Poletika N, Gao XW (2007) Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regul Toxicol Pharmacol 47:184–188. doi: 10.1016/j.yrtph.2006.09.002 CrossRefGoogle Scholar
  33. WHO (1990) Cyhalothrin; environmental health criteria 99. World Health Organization, GenevaGoogle Scholar
  34. Williams DA (1972) The comparison of several dose levels with zero dose control. Biometrics 28:519–531. doi: 10.2307/2556164 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • René P. A. van Wijngaarden
    • 1
  • Ian Barber
    • 2
  • Theo C. M. Brock
    • 1
  1. 1.Department for Water and ClimateAlterraWageningenThe Netherlands
  2. 2.Dow AgroSciencesAbingdonUK

Personalised recommendations