, 18:81 | Cite as

Modification of the acute toxic response of Daphnia magna Straus 1820 to Cr(VI) by the effect of varying saline concentrations (NaCl)

  • María de la Paz Gómez-Díaz
  • Fernando Martínez-Jerónimo


Daphnia magna Straus is a freshwater organism that can strive in environments with a salinity of up to 12 psu, although its life cycle and survival are significantly affected by increasing salinities. Saline environments are not devoid of chemical contaminant influences, such as toxic metals; for freshwater species this could be another stress factor aside from that caused by salinity. In this study, we assessed the acute (48 h) toxicity produced by hexavalent chromium [Cr(VI)] in neonates of a D. magna strain previously acclimated to different salinities induced by adding NaCl to reconstituted hard water. The Mean Lethal Concentration (CL50) values determined for Cr(VI) were 0.14 ± 0.12, 1.35 ± 0.34, 1.79 ± 0.41, 2.0 ± 0.21, 2.02 ± 0.075, and 2.6 ± 0.23 mg l−1 for salinities of 0.3, 1, 2, 3, 4, and 5 psu, respectively, evidencing that D. magna’s sensitivity to Cr(VI) decreased with increasing salinity. The increase in tolerance could be due to a possible antagonic effect of NaCl on Cr(VI) rather than due to a reduction in Cr(VI) bioavailability due to the NaCl concentration. Although it was not demonstrated that the stress produced by salinity increased the sensitivity to the exposed toxicant, care must be exerted in inferring that the impact of contaminants, such as toxic metals, could be lower on freshwater species that sporadically or permanently strive in brackish water environments.


Salinity Cladocera Aquatic pollution Toxic metal Chromium 



F. Martínez-Jerónimo thanks the Comisión de Operación y Fomento de Actividades Académicas (COFAA) of Instituto Politécnico Nacional (IPN) and the Sistema de Estímulo al Desempeño de los Investigadores (EDI) of IPN for their support. We also thank the two anonymous reviewers for their valuable comments to improve this manuscript. Finally, thanks to Ms. Ingrid Mascher for editorial assistance in preparing the manuscript.


  1. Adema DMM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hidrobiologia 59:125–135. doi: 10.1007/BF00020773 CrossRefGoogle Scholar
  2. Aladin N (1991) Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral sea. Hydrobiologia 225:291–299. doi: 10.1007/BF00028407 CrossRefGoogle Scholar
  3. Ansari TM, Marr IL, Tariq N (2004) Heavy metals in marine pollution perspective-A mini review. J Appl Sci 4:1–20Google Scholar
  4. Arnér M, Koivisto S (1993) Effects of salinity on metabolism and life history characteristics of Daphnia magna. Hydrobiologia 259:69–77. doi: 10.1007/BF00008373 CrossRefGoogle Scholar
  5. Berezina NA (2003) Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34(4):261–266. doi: 10.1023/A:1024597832095 CrossRefGoogle Scholar
  6. Bouquegneau JM, Gilles R (1979) Osmoregulation and pollution of the aquatic medium. In: Gilles R (ed) Mechanisms of osmoregulation in animals. Wiley, New York, pp 563–580Google Scholar
  7. Bryant V, McLusky DS, Roddie K, Newbery DM (1984) Effect of temperature and salinity on the toxicity of chromium to three estuarine invertebrates (Corophium volutator, Macoma balthica, Nereis diversicolor). Mar Ecol Prog Ser 20:137–149. doi: 10.3354/meps020137 CrossRefGoogle Scholar
  8. Bulus GD, Ronco ED (1996) Acute toxicity bioassay using D. obtuse as test organism. Environ Toxicol Water Qual 11:255–258. doi:10.1002/(SICI)1098-2256(1996)11:3<255::AID-TOX11>3.0.CO;2-ACrossRefGoogle Scholar
  9. Camacho MI, Gamboa J (2006) Biodisponibilidad de metales en agua salobre (3 ups) y su efecto tóxico en el langostino Macrobrachium rosenbergii. Rev Toxicol 11:1–12. Available via:
  10. De Schamphelaere KA, Bossuyt BT, Janssen CR (2007) Variability of the protective effect of sodium on the acute toxicity of copper to freshwater cladocerans. Environ Toxicol Chem 26:535–542. doi: 10.1897/06-247R.1 CrossRefGoogle Scholar
  11. Dönmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762. doi: 10.1016/S0032-9592(02)00204-2 CrossRefGoogle Scholar
  12. Dorn PB, Rodgers JH, Jop JR, Jop KM, Raia JC, Dickson KL (1987) Hexavalent chromium as a reference toxicant in effluent toxicity test. Environ Toxicol Chem 6:435–444. doi: 10.1897/1552-8618(1987)6[435:HCAART]2.0.CO;2 CrossRefGoogle Scholar
  13. Engel DW, Fowler BA (1979) Factors influencing cadmium accumulation and its toxicity to marine organisms. Environ Health Perspect 28:81–88. doi: 10.2307/3428908 CrossRefGoogle Scholar
  14. Enserink L, Luttmer W, Dicpeveen M (1990) Reproductive strategy of Daphnia magna affects the sensitivity of its progeny in acute toxicity tests. Aquat Toxicol 17:15–26. doi: 10.1016/0166-445X(90)90009-E CrossRefGoogle Scholar
  15. Gagneten AM (2002) Respuesta de una comunidad zooplanctónica de agua dulce a la aplicación de cromo en clausuras experimentales. Interciencia 27:563–570Google Scholar
  16. García MT, Ribosa I, Pérez L, Sanchez-Leal J (1994) The environmental impact of chromium salts: Ecotoxicity and inhibition of surfactant biodegradation. Toxicol Environ Chem 44:225–232CrossRefGoogle Scholar
  17. Greenwald GM, Hurlbert SH (1993) Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. Hydrobiologia 267:307–335. doi: 10.1007/BF00018810 CrossRefGoogle Scholar
  18. Hebert PDN, Finston TJ (1993) A taxonomic re-evaluation of North American Daphnia (Crustacea: Cladocera) I. The Daphnia similis complex. Can J Zool 71:908–925CrossRefGoogle Scholar
  19. Hebert PDN, Remigio EA, Colbourne JK, Taylor DJ, Wilson CC (2002) Accelerated molecular evolution in halophilic crustaceans. Evolution 56:909–926Google Scholar
  20. Heugens EHW, Tokkie LTB, Kraak MHS, Hendriks AJ, van Straalen NM, Admiraal W (2006) Population growth of Daphnia magna under multiple stress conditions: Joint effects of temperature, food, and cadmium. Environ Toxicol Chem 25:1399–1407. doi: 10.1897/05-294R.1 CrossRefGoogle Scholar
  21. Maltby L, Calow P (1989) The application of bioassays in the resolution of environmental problems; past, present and future. Hydrobiologia 188(189):65–76Google Scholar
  22. Martínez-Jerónimo F, Martínez-Jerónimo L (2007) Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicol Environ Saf 67:411–416. doi: 10.1016/j.ecoenv.2006.08.009 CrossRefGoogle Scholar
  23. Martínez-Jerónimo F, Espinosa-Chávez F, Villaseñor-Córdova R (2000) Effect of culture volume and adult density on the neonate production of Daphnia magna, as test organisms for aquatic toxicity tests. Environ Toxicol 15:155–159. doi:10.1002/1522-7278(2000)15:3<155::AID-TOX1>3.0.CO;2-XCrossRefGoogle Scholar
  24. Martínez-Jerónimo F, Martínez-Jerónimo L, Espinosa-Chávez F (2006) Effect of culture conditions and mother’s age on the sensitivity of Daphnia magna Straus 1820 (Cladocera) neonates to hexavalent chromium. Ecotoxicology 15:259–266. doi: 10.1007/s10646-006-0057-5 CrossRefGoogle Scholar
  25. McLusky D, Hagerman L (1987) The toxicity of chromium, nickel and zinc: effects of salinity and temperature, and the osmoregulatory consequences in the mysid Praunus flexuosus. Aquat Toxicol 10:225–238. doi: 10.1016/0166-445X(87)90014-2 CrossRefGoogle Scholar
  26. McLusky D, Bryant V, Campbell R (1986) The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanogr Mar Biol Ann Rev 24:481–520Google Scholar
  27. Müller HG (1980) Experiences with test systems using Daphnia magna. Ecotoxicol Environ Saf 4:21–25. doi: 10.1016/0147-6513(80)90004-4 CrossRefGoogle Scholar
  28. Neberek AV, Cairns MA, Onjukka ST, Titus RH (1986) Effect of age on sensitivity of Daphnia magna to cadmium, copper and cyanazine. Environ Toxicol Chem 5:527–530. doi: 10.1897/1552-8618(1986)5[527:EOAOSO]2.0.CO;2 CrossRefGoogle Scholar
  29. Parker T (1985) Results of an interlaboratory study to determine the acute toxicity of potassium dichromate to Daphnia magna. Part 2. Environmental Protection Service, Environment CanadaGoogle Scholar
  30. Peters RH (1987) Metabolism in Daphnia. Mem Ist Ital Idrobiol 45:193–243Google Scholar
  31. Schubauer-Berigan MK, Dierkes JR, Monson PD, Ankley GT (1993) pH-Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbricus variegatus. Environ Toxicol Chem 12:1261–1266. doi: 10.1897/1552-8618(1993)12[1261:PTOCCN]2.0.CO;2 CrossRefGoogle Scholar
  32. Schuytema GS, Nebeker AV, Stutzman TW (1997) Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests. Arch Environ Contam Toxicol 33:194–198. doi: 10.1007/s002449900242 CrossRefGoogle Scholar
  33. SECOFI (1995) Análisis de aguas. Evaluación de toxicidad aguda con Daphnia magna Straus (Crustacea-Cladócera)-Método de Prueba. NMX-AA-087-1995-SCFI. Secretaría de Comercio y Fomento Industrial, México, DF, 42 ppGoogle Scholar
  34. Silva J, Torrejón G, Bay E (2003) Calibración del bioensayo de toxicidad aguda con Dapnia pulex (Crustacea: Cladocera) usando un tóxico de referencia. Gayana (Zool) 67:87–96Google Scholar
  35. Smolders R, Baillieul M, Blust R (2005) Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquat Toxicol 73:155–170. doi: 10.1016/j.aquatox.2005.03.006 CrossRefGoogle Scholar
  36. Stein JR (1973) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, London, pp 7–24Google Scholar
  37. Stephan CE (1977) Methods for calculating an LC50. In: Mayer FL, Hamelink JL (eds) Aquatic toxicology and hazard evaluation, ASTM 534. Philadelphia, Pennsylvania, pp 65–84Google Scholar
  38. Téllez J, Carvajal M, Gaitán AM (2004) Aspectos toxicológicos relacionados con la utilización del Cromo en el proceso productivo de curtiembres. Rev Fac Med Univ Nac Colomb 52:50–61Google Scholar
  39. Teschner M (1995) Effects of salinity on the life history and fitness of Daphnia magna: variability within and between populations. Hydrobiologia 307:33–41. doi: 10.1007/BF00031995 CrossRefGoogle Scholar
  40. U. S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5a. Ed. EPA-821-R-02-012Google Scholar
  41. Utz LRP, Bohrer MBC (2001) Acute and chronic toxicity of potassium chloride (KCl) and potassium acetate (KC2H3O2) to Daphnia similis and Ceriodaphnia dubia (Crustacea; Cladocera). Bull Environ Contam Toxicol 66:379–385. doi: 10.1007/s00128-001-0016-z CrossRefGoogle Scholar
  42. Van der Meer C, Teunissen C, Boog FM (1988) Toxicity of sodium chromate and 3, 4-dichhloroaniline to crustaceans. Bull Environ Contam Toxicol 40:204–211. doi: 10.1007/BF01881040 CrossRefGoogle Scholar
  43. Van Leeuwen CJ, Niebek G, Rijkeboer M (1987) Effects of chemical stress on the population dynamics of Daphnia magna: a comparison of two test procedures. Ecotoxicol Environ Saf 14:1–11. doi: 10.1016/0147-6513(87)90077-7 CrossRefGoogle Scholar
  44. Zalizniak L, Kefford BJ, Nugegoda D (2006) Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Mar Freshw Res 57:75–82. doi: 10.1071/MF05103 CrossRefGoogle Scholar
  45. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156. doi: 10.1023/A:1022504826342 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • María de la Paz Gómez-Díaz
    • 1
  • Fernando Martínez-Jerónimo
    • 1
  1. 1.Laboratory of Experimental HydrobiologyEscuela Nacional de Ciencias Biológicas, I.P.N.MexicoMexico

Personalised recommendations