, Volume 18, Issue 1, pp 5–14 | Cite as

Corticosterone in relation to tissue cadmium, mercury and selenium concentrations and social status of male lesser scaup (Aythya affinis)

  • Brady Pollock
  • Karen L. Machin


Combined lesser scaup (Aythya affinis) and greater scaup (A. marila) populations have declined steadily from the 1970s. Accompanying the population decline have been two shifts in lesser scaup demographics: a decrease in the proportion of young birds and an increase in male to female ratio. In addition, there are concerns about potential effects of contaminants and trace elements. These metals may influence the stress response and corticosterone secretion. We examined impacts of cadmium, selenium and mercury on the stress response in relation to social status in male lesser scaup near Yellowknife, NWT May to June 2004 and 2005. Kidney cadmium and liver selenium and mercury ranged 0.78–93.6, 2.12–9.64, and 0.56–3.71 μg/g, dry weight, respectively. Results suggest that corticosterone release may be influenced by complex contaminant interactions in relation to body condition and body size. When cadmium was high and birds were in good body condition, there was a negative relationship between liver selenium and corticosterone (R 2 = 0.60, n = 10, P = 0.008) but not in birds with poor body condition (R 2 = 0.07, n = 9, P = 0.50). Unfortunately we were unable to draw any conclusions about metals and social status in relation to corticosterone or glucose and T4. This study emphasizes the complex nature of biological systems and the importance of considering interactions to characterize effects of metals.


Stress Corticosterone Metals Lesser scaup Ducks 



We thank R. Brua for aid in statistical analysis and R. Clark and G. Wobeser for comments on the preparation of this manuscript. We thank H. James and N. Harms for help in collection of samples and J. Heer for help during analysis of samples. We also thank J. Hines and S. Leach for their assistance. This project was funded by the National Sciences and Engineering Council of Canada and Environment Canada’s Science Horizons Youth Internship Program.


  1. Afton AD (1985) Forced copulation as a reproductive strategy of male lesser scaup: a field test of some predictions. Behaviour 92:146–167. doi: 10.1163/156853985X00424 CrossRefGoogle Scholar
  2. Alisauskas RT, Ankney CD (1994) Nutrition of breeding female Ruddy ducks: the role of nutrient reserves. Condor 96:878–897. doi: 10.2307/1369099 CrossRefGoogle Scholar
  3. Anderson MG, Sayler RD, Afton AD (1980) A decoy trap for diving ducks. J Wildlife Manage 44:217–219. doi: 10.2307/3808371 CrossRefGoogle Scholar
  4. Anteau MJ, Afton AD, Custer CM, Custer TW (2007) Relationships of cadmium, mercury, and selenium with nutrient reserves of female lesser scaup (Aythya affinis) during winter and spring migration. Environ Toxicol Chem 26:515–520. doi: 10.1897/06-309R.1 CrossRefGoogle Scholar
  5. Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23:335–365. doi: 10.2307/3676661 CrossRefGoogle Scholar
  6. Atkinson S, Adams NR, Martin GB (1995) Secretion of adrenal steroids in female sheep of differing body size and composition. Small Rumin Res 17:237–243. doi: 10.1016/0921-4488(95)00694-G CrossRefGoogle Scholar
  7. Austin JE, Custer CM, Afton AD (1998) Lesser scaup (Aythya affinis). In: Poole A, Gill F (eds) The birds of North America No. 338. The Birds of North America, Inc., Philadelphia, PA, Google Scholar
  8. Austin JE, Afton AD, Anderson MG, Clark RG, Custer CM, Lawrence JL et al (2000) Declining scaup populations: issues, hypotheses, and research needs. Wildlife Soc Bull 28:254–263Google Scholar
  9. Baos R, Blas J, Bortolotti GR, Marchant TA, Hiraldo F (2006) Adrenocortical response to stress and thyroid hormone status in free-living nestling white storks (Ciconia ciconia) exposed to heavy metal and arsnic contamination. Environ Health Perspect 114:1497–1501CrossRefGoogle Scholar
  10. Barboza PS, Jorde DG (2001) Intermittent feeding in a migratory omnivore: digestions and body composition of American black duck during migration. Physiol Biochem Zool 74:307–317. doi: 10.1086/319658 CrossRefGoogle Scholar
  11. Barregard L, Lindstedt G, Schutz A, Sallsten G (1994) Endocrine function in mercury exposed chloralkali workers. Occup Environ Med 51:536–540CrossRefGoogle Scholar
  12. Berney PJ, Veniat A, Mazallon M (2003) Bioaccumulation of lead, cadmium, and lindane in Zebra mussels (Driessena polymorpha) and associated risk for bioconcentrations in Tufted ducks (Aythia fuligula). Bull Environ Contam Toxicol 71:90–97. doi: 10.1007/s00128-003-0135-9 CrossRefGoogle Scholar
  13. Bleau H, Daniel C, Chevalier G, van Tra H, Hontela A (1996) Effects of acute exposure to mercury chloride and methylmercury on plasm cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34:221–235. doi: 10.1016/0166-445X(95)00040-B CrossRefGoogle Scholar
  14. Burgess N, Evers D, Kaplan J (2005) Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology 14:241–252. doi: 10.1007/s10646-004-6271-0 CrossRefGoogle Scholar
  15. Burrin DG, Ferrell CL, Britton RA, Bauer M (1990) Level of nutrition and visceral organ size and metabolic activity in sheep. Br J Nutr 64:439–448. doi: 10.1079/BJN19900044 CrossRefGoogle Scholar
  16. Cabanero AI, Madrid Y, Camara C (2006) Selenium long-term administration and its effect on mercury toxicity. J Agric Food Chem 54:4461–4468. doi: 10.1021/jf0603230 CrossRefGoogle Scholar
  17. Chowdhury MJ, Pane EF, Wood CM (2004) Physiological effects of dietary cadmium acclimation and waterborne cadmium challenge in rainbow trout: respiratory, ionoregulatory, and stress parameters. Comp Biochem Phys C Toxicol Pharmacol 139:163–173CrossRefGoogle Scholar
  18. Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497. doi: 10.1016/S0169-5347(01)02227-3 CrossRefGoogle Scholar
  19. Custer CM, Custer TW (2000) Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the Zebra mussel invasion. Environ Toxicol Chem 19:2821–2829. doi :10.1897/1551-5028(2000)019<2821:OATECI>2.0.CO;2CrossRefGoogle Scholar
  20. Custer TW, Custer CM, Hines RK, Sparks DW (2000) Trace elements, organochlorines, polycyclic aromatic hydrocarbons, dioxins, and furans in lesser scaup wintering on Indiana Harbor Canal. Environ Pollut 110:469–482. doi: 10.1016/S0269-7491(99)00315-2 CrossRefGoogle Scholar
  21. Custer CM, Custer TW, Anteau MJ, Afton AD, Wooten DE (2003) Trace elements in lesser scaup (Aythya affinis) from the Mississippi Flyway. Ecotoxicology 12:47–54. doi: 10.1023/A:1022584712262 CrossRefGoogle Scholar
  22. De Blaaus I, Schols AM, Koerts-deLang E, Wouters EF, Deutz NE (2004) De novo glutamine sysnthesis induced by corticosteroids in vivo in rates is secondary to weight loss. Clin Nutr 23:1035–1042. doi: 10.1016/j.clnu.2004.01.004 CrossRefGoogle Scholar
  23. DeVink J-M, Clark RG, Slattery SM, Wayland M (2008) Is selenium affecting body condition and reproduction in boreal breeding scaup, scoters, and ring-necked ducks? Environ Pollut 152:1–7. doi: 10.1016/j.envpol.2007.05.003 CrossRefGoogle Scholar
  24. Di Giulio RT, Scanlon PF (1985) Effect of cadmium ingestion and food restriction on energy metabolism and tissue metal concentrations in mallard ducks (Anas platyrhynchos). Environ Res 37:433–444. doi: 10.1016/0013-9351(85)90125-2 CrossRefGoogle Scholar
  25. Drastichova J, Svobodova Z, Luskova V, Celechovska O, Kalab P (2004) Effect of cadmium on blood plasma biochemistry in carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 72:733–740. doi: 10.1007/s00128-004-0306-3 Google Scholar
  26. Draulans D (1982) Foraging and size selection of mussels by the tufted duck, Aythya fuligula. J Anim Ecol 51:943–956. doi: 10.2307/4015 CrossRefGoogle Scholar
  27. Fernie KJ, Shutt JL, Mayne GJ, Hoffman D, Letcher RJ, Drouillard KG et al (2005) Exposure to Polybrominated Diphenyl Ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American Kestrals (Falco sparverius). Toxicol Sci 88:375–383. doi: 10.1093/toxsci/kfi295 CrossRefGoogle Scholar
  28. Fortman JK, Rechling T, German RZ (2005) The impact of maternal protein malnutrition on pre-weaning skeletal and visceral organ growth in neonatal offspring of Rattus norvegicus. Growth Dev Aging 69:39–52Google Scholar
  29. Freeman HC, Sangalang GB (1977) A study of the effects of methyl mercury, cadmium, arsenic, selenium, and PCB, (Aroclor 1245) on adrenal and testicular steroidogenesis in vitro, by the grey seal, Halichoerus grypus. Arch Environ Contam Toxicol 5:369–383. doi: 10.1007/BF02220918 CrossRefGoogle Scholar
  30. Furness RW (1996) Cadmium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Lewis Publishers, New York, pp 389–404Google Scholar
  31. Gasiewicz T, Smith J (1976) Interactions of cadmium and selenium in rat plasma in vivo and in vitro. Biochim Biophys Acta 428:113–118Google Scholar
  32. Guthery FS, Lusk JJ, Peterson MJ (2001) The fall of the null hypothesis: liabilities and opportunities. J Wildlife Manage 65:379–384. doi: 10.2307/3803089 CrossRefGoogle Scholar
  33. Heath JA, Frederick PC (2005) Relationships among mercury concentrations, hormones, and nesting effort of White Ibises (Eudocimus albus) in the Florida Everglades. Auk 122:255–267. doi: 10.1642/0004-8038(2005)122[0255:RAMCHA]2.0.CO;2 CrossRefGoogle Scholar
  34. Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Lewis Publishers, New York, pp 447–458Google Scholar
  35. Heinz GH, Hoffman DJ (1998) Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards. Environ Toxicol Chem 17:139–145. doi :10.1897/1551-5028(1998)017<0139:MCASIO>2.3.CO;2CrossRefGoogle Scholar
  36. Hidalgo J, Armario A (1987) Effect of Cd administration on the pituitary-adrenal axis. Toxicology 45:113–116. doi: 10.1016/0300-483X(87)90119-3 CrossRefGoogle Scholar
  37. Hoffman D, Ohlendorf HM, Marn CM, Pendleton GW (1998) Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Fransisco Bay region, USA. Environ Toxicol Chem 17:167–172. doi :10.1897/1551-5028(1998)017<0167:AOMASW>2.3.CO;2CrossRefGoogle Scholar
  38. Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF (2001) Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J Comp Physiol [B] 171:701–709. doi: 10.1007/s003600100230 Google Scholar
  39. Kotrschal K, Hirschenhauser K, Mostl E (1998) The relationship between social stress and dominance is seasonal in greylag geese. Anim Behav 55:171–176. doi: 10.1006/anbe.1997.0597 CrossRefGoogle Scholar
  40. Lafuente A, Esquifino AI (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110:209–218. doi: 10.1016/S0378-4274(99)00159-9 CrossRefGoogle Scholar
  41. Lafuente A, Marquez N, Pazo D, Esquifino AI (2000) Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels or prolactin, GH and ACTH. Biometals 13:47–55. doi: 10.1023/A:1009286709935 CrossRefGoogle Scholar
  42. Levengood JM (2003) Cadmium and lead in tissues of mallards (Anas platythychos) and wood ducks (Aix sponsa) using the Illinois River (USA). Environ Pollut 122:177–181. doi: 10.1016/S0269-7491(02)00298-1 CrossRefGoogle Scholar
  43. Lovvorn JR, Gillingham MP (1996) A spatial energetics model of cadmium accumulation by diving ducks. Arch Environ Contam Toxicol 30:241–251. doi: 10.1007/BF00215804 CrossRefGoogle Scholar
  44. Moller G (1996) Biogeochemical interactions affecting hepatic trace element levels in aquatic birds. Environ Toxicol Chem 15:1025–1033. doi :10.1897/1551-5028(1996)015<1025:BIAHTE>2.3.CO;2CrossRefGoogle Scholar
  45. NAWMP (2004) North American waterfowl management plan 2004. Implementation framework: strengthening the biological foundation. Canadian Wildlife Service. United States Fish and Wildlife Service, North American Waterfowl Management Plan, Plan Committee, 106 ppGoogle Scholar
  46. Neugebauer EA, Sans Cartier GL, Wakeford BJ (2000). Methods for the determination of metals in wildlife tissues using various atomic absorption spectrophotometry techniques. Canadian Wildlife Service, Hull, QuebecGoogle Scholar
  47. Petrie S (2004) Selenium in scaup: a disturbing trend in the Great Lakes. Birdwatch Can 28:9–13Google Scholar
  48. Poisbleau M, Fritz H, Guillon N, Chastel O (2005) Linear social dominance hierarchy and corticosterone responses in male mallards and pintails. Horm Behav 47:485–492. doi: 10.1016/j.yhbeh.2005.01.001 CrossRefGoogle Scholar
  49. Potmis RA, Nonavinakere VA, Rasekh HR, Early JL (1993) Effect of selenium in plasma ACTH, endorphin, corticosterone and glucose in rat: influence of adrenal enucleation and metyrapone prettreatment. Toxicology 79:1–9. doi: 10.1016/0300-483X(93)90201-3 CrossRefGoogle Scholar
  50. Puls R (1994) Mineral levels in animal health: diagnostic data. Sherpa International, Clearbrook, BCGoogle Scholar
  51. Rajanna B, Hobson M, Reese J, Sample E, Chapatwala KD (1984) Chronic hepatic and renal toxicity by cadmium in rats. Drug Chem Toxicol 7:229–241. doi: 10.3109/01480548409035105 CrossRefGoogle Scholar
  52. Reimers TJ, Lawler DF, Sutaria DF, Correa MT, Erb HN (1990) Effects of age, sex, and body size on serum concentartions of thyroid and adrenocortical hormones in dogs. Am J Vet Res 51:454–457Google Scholar
  53. Romero LM, Romero RC (2002) Corticosterone response in wild birds: the importance of rapid intial sampling. Condor 104:129–135. doi: 10.1650/0010-5422(2002)104[0129:CRIWBT]2.0.CO;2 CrossRefGoogle Scholar
  54. Røskaft E, Järvi T, Bakken M, Bech C, Reinertsen RE (1986) The relationship between social status and resting metabolic rate in great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). Anim Behav 34:838–842. doi: 10.1016/S0003-3472(86)80069-0 CrossRefGoogle Scholar
  55. Searcy WA, Peters S, Nowicki S (2004) Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia. J Avian Biol 35:269–279. doi: 10.1111/j.0908-8857.2004.03247.x CrossRefGoogle Scholar
  56. Senar JC, Polo V, Uribe F, Camerino M (2000) Status signalling, metabolic rate and body mass in the siskin: the cost of being a subordinate. Anim Behav 59:103–110. doi: 10.1006/anbe.1999.1281 CrossRefGoogle Scholar
  57. Shuquin C, Hangting C, Xianjin Z (1999) Determination of mercury in biological samples using organiccompounds as matrix modifiers by inductively coupled plasma mass spectrometry. J Anal At Spectrom 14:1183–1186. doi: 10.1039/a902772f CrossRefGoogle Scholar
  58. Silverin B (1998) Stress response in birds. Poult Avian Biol Rev 9:153–168Google Scholar
  59. Sin YM, Teh WF, Wong MK, Reddy PK (1990) Effect of mercury and glutathione and thyroid hormone. Bull Environ Contam Toxicol 44:616–622. doi: 10.1007/BF01700885 CrossRefGoogle Scholar
  60. Sorenson LG, Nolan PM, Brown AM, Derrickson SR, Monfort SL (1997) Hormonal dynamics during mate choice in the Northern pintail: a test of the “challenge” hypothesis. Anim Behav 54:1117–1133. doi: 10.1006/anbe.1997.0554 CrossRefGoogle Scholar
  61. Takekawa JY, Wainwright-De La Cruz SE, Hothem RL, Yee J (2002) Relating body condition to inorganic contaminant concentrations of diving ducks wintering in coastal California. Arch Environ Contam Toxicol 42:60–70. doi: 10.1007/s002440010292 CrossRefGoogle Scholar
  62. Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JEG (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res Sect A 90:47–60. doi: 10.1006/enrs.2002.4384 CrossRefGoogle Scholar
  63. Wayland M, Smits JEG, Gilchrist HG, Marchant T, Keating J (2003) Biomarker responses in nesting, common eiders in the Canadian arctic in relation to tissue cadmium, mercury and selenium concentrations. Ecotoxicology 12:225–237. doi: 10.1023/A:1022506927708 CrossRefGoogle Scholar
  64. Whanger PD, Oh SH (1979) Nutritional and environmental factors affecting metallothionein levels. Experentia 34:281–291Google Scholar
  65. Wingfield JC (1994) Modulation of the adrenocortical response to stress in birds. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in comparative endocrinology. National Research Council of Canada, Ottawa, pp 520–528Google Scholar
  66. Wingfield JC, Farner DS (1993) Endocrinology of reproduction in wild species. In: Farner DS, King JR (eds) Avian biology. Academic Press, London, pp 163–327Google Scholar
  67. Wingfield JC, Smith J, Farner D (1982) Endocrine responses to stress of White-crowned sparrows to environmental stress. Condor 84:399–409. doi: 10.2307/1367443 CrossRefGoogle Scholar
  68. Wingfield JC, Hegner RE, Dufty AF Jr, Ball GF (1990) The “challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846. doi: 10.1086/285134 CrossRefGoogle Scholar
  69. Yu X, Hong S, Faustman EM (2008) Cadmium-induced activation of stress signalling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat sertoli cell-gonocyte cocultures. Toxicol Sci 104:385–396. doi: 10.1093/toxsci/kfn087 CrossRefGoogle Scholar
  70. Zillioux EJ, Porcella DB, Benoit JM (1993) Mercury cycling and effects in freshwater wetland ecosystems. Environ Toxicol Chem 12:2245–2264. doi: 10.1897/1552-8618(1993)12[2245:MCAEIF]2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Veterinary Biomedical Sciences, Western College of Veterinary MedicineUniversity of SaskatchewanSaskatoonCanada
  2. 2.Toxicology CentreUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations