, Volume 17, Issue 8, pp 738–746 | Cite as

Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana

  • M. C. Garrido-Perez
  • J. A. Perales-VargasMachuca
  • E. Nebot-Sanz
  • D. Sales-Márquez


In this paper, the toxicity of linear alkylbenzene sulfonate (LAS) was evaluated in the marine microalga Isochrysis galbana using data of growth inhibition toxicity tests at 96-h exposure time. Toxicity was examined in standard conditions and by means of the modification of two variables of the test media: (1) the dilution water and (2) the content of nutrients in the test medium. For this purpose, a total of 10 toxicity test were designed: five dilution waters, four natural marine waters and one synthetic seawater; each in two different nutritive conditions, saturated nutrient concentration (SC) by the addition of modified f/2 nutritive medium, and natural nutrient concentration (NC), i.e., without the addition of f/2. At threshold toxicity levels, the dilution waters used in the test and the nutrient concentrations did not affect the toxicity of LAS. At IC50 concentrations, the toxicity of LAS is influenced by both variables: under SC conditions, the toxic effect of LAS diminishes, obtaining in all the tests IC50 > 10 mg/L LAS. Under NC conditions, IC50 concentrations ranging between 3.15 and 9.26 mg/L LAS have been obtained.


Surfactant Linear alkylbenzene sulfonate (LAS) Toxicity test Microalga Isochrysis galbana IC50 Nutrient conditions 



The authors thank Dr. Luis Lubian (ICMAN-CSIC, Spain), for providing cultures of Isochrysis galbana and to the Regional Council of Environment of Andalusia (Consejeria de Medio Ambiente) of Spain for financing this study.


  1. Abel PD, Axiak V (1991) Ecotoxicology and the marine environment. Ellis Horwood, EnglandGoogle Scholar
  2. Broderius SJ, Kahl M, Hoglund MD (1995) Use of joint toxic response to define the primary mode of action for diverse industrial organic chemicals. Environ Toxicol Chem 14:1591–1605CrossRefGoogle Scholar
  3. Campa-Córdova AI, Luna-Gonzalez A, Ascencio F, Cortés-Jacinto E, Cáceres-Martínez CJ (2006) Effects of chloramphenicol, erythromycin and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 260:145–150CrossRefGoogle Scholar
  4. Cavalli L, Clerici R, Radici P, Valtorta L (1999) Update on LAB/LAS. Tenside Surf Det 36:254–258Google Scholar
  5. Cavalli L, Cassani G, Vigano L, Pravettoni S, Nucci G, Lazzarin M, Zatta A (2000) Surfactants in sediments. Tenside Surf Det 37:282–288Google Scholar
  6. Christoffersen K, Hansen BW, Johansson LS, Krog E (2003) Influence of LAS on marine calanoid copepod population dynamics and potential reproduction. Aquat Toxicol 63:405–416CrossRefGoogle Scholar
  7. CMAJA, Consejería de Medio Ambiente, Junta de Andalucía (1996) Inventario de vertidos líquidos al litoral de Andalucía. Sevilla, SpainGoogle Scholar
  8. Correa-Reyes G, Viana MT, Marquez-Rocha FJ, Licea AF, Ponce E, Vazquez-Duhalt R (2007) Nonylphenol algal bioaccumulation and its effect through the trophic chain. Chemosphere 68:662–670CrossRefGoogle Scholar
  9. ECETOC, European Centre for Ecotoxicology, Toxicology of Chemicals (1993) Technical report N° 56. Aquatic toxicity data evaluation. Appendix C: the database. ECETOC, Brussels, BelgiumGoogle Scholar
  10. ECETOC, European Centre for Ecotoxicology, Toxicology of Chemicals (2001) Technical report N° 82. Risk assessment in marine environments. ECETOC, Brussels, BelgiumGoogle Scholar
  11. EEC, European Economic Community (1993) Council Regulation (EEC) N° 793/93, of 23 March 1993, on the evaluation and control of the risks of existing substances. Official Journal, L 84/1, of 5 April 1993Google Scholar
  12. EEC, European Economic Community (1996) Technical guidance document in support of commission directive 96/67/EEC on risk assessment for new notified substances and commission regulation EC N° 1488/94 on risk assessment for existing substances. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  13. EEC, European Economic Community (2000) Directive 2000/60/CE of the European Parliament and of the Council, of 23 October 2000, establishing a frame work for Community action in the field of water policy. Official Journal, L 327/1, of 22 December 2000Google Scholar
  14. Garrido-Pérez C, Acevedo-Merino A, Nebot-Sanz E, Sales-Marquez D (2003) A set of marine microalgae biotests for the evaluation of biological water quality in enclosure areas in south of Spain. Water Sci Technol 47(9):85–92Google Scholar
  15. González S, Petrovic M, Barcelo D (2007) Removal of a broad range of surfactants from municipal wastewater. Comparison between membrane bioreactor and convenctional activated sludge treatment. Chemosphere 67:335–343CrossRefGoogle Scholar
  16. Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms, I. Cyclotella nana Hustedt and Dentonula confervaceae Cleve Gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  17. Hampel M, Moreno-Garrido I, Sobrino C, Lubián LM, Blasco J (2001) Acute toxicity of LAS in marine microalgae: Esterase activity and inhibition growth as endpoints of toxicity. Ecotox Environ Safe 48:287–292CrossRefGoogle Scholar
  18. HERA (Human and Environmental Risk Assessment) (2004) LAS CAS No 68411-30-3. Version No. 9. ( A.I.S.E. Association Internationale de la Savonnerie, de la Détergence et des Produits d’Entretien (, Cefic. European Chemical Industry Council (
  19. Huertas E, Montero O, Lubian LM (2000) Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescent of two species of marine microalgae. Aquacult Eng 22:181–197CrossRefGoogle Scholar
  20. Jensen J, Sverdrup LE (2002) Joint toxicity of linear alkylbencene sulfonates and pyrene on Folsomia fimetaria. Ecotox Environ Safe 52:75–81CrossRefGoogle Scholar
  21. Lara-Martín PA, Petrovic M, Gómez-Parra A, Barceló D, González-Mazo E (2006) Presence of surfactants and their degradation intermediates in sediment cores and grabs from the Cadiz Bay area. Environ Pollut 144:483–491CrossRefGoogle Scholar
  22. León VM, Sáez M, González-Mazo E, Gómez-Parra A (2002) Occurrence and distribution of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids in several Iberian Littoral ecosystems. Sci Total Environ 288:215–226CrossRefGoogle Scholar
  23. Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58:1249–1253CrossRefGoogle Scholar
  24. Lubián LM, Yúfera M (1989) Colección de Cepas de Microalgas del Instituto de Ciencias Marinas de Andalucía CSIC. Acuicultura intermareal, Instituto de Ciencias Marinas de Andalucía, CSIC, Cádiz, SpainGoogle Scholar
  25. Matthijs E, Holt MS, Kiewiet A, Rijs GBJ (1999) Environmental Monitoring for Linear Alkylbenzene Sulphonate (LAS), Alcohol Ethoxylate (AE), Alcohol Ethoxy Sulphate (AES), Alcohol Sulphate (AS) and Soap. Environ Toxicol Chem 18:2634–2644CrossRefGoogle Scholar
  26. Moreno-Garrido I, Lubian LM, Soares AMVM (2000) Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. Ecotox Environ Safe 47:112–116CrossRefGoogle Scholar
  27. Norberg-King TJ (1988) An interpolation estimate for chronic toxicity: the ICp approach. NETAC technical report 05-88. United States Environmental Protection Agency, Duluth, MNGoogle Scholar
  28. Painter H, Zabel T (1988) Review of the environmental safety of LAS. Technical report CO 1659-M/EV 8658. Water Research Center. Medmenham, United KingdomGoogle Scholar
  29. Ramamoorthy R, Baddaloo EG (1995) Handbook of chemical toxicity profiles of biological species, vol I: Aquatic Species. CRC Press, IncGoogle Scholar
  30. Rand GM (ed) (1995) Fundamentals of aquatic toxicology. Effects, environmental fate, and risk assessment, 2nd edn. Ed. Taylor & Francis, WashingtonGoogle Scholar
  31. Roberts DW (2003) Optimisation of the linear alkylbenzene sulfonation process for surfactant manufacture. Org Proc Res Dev 7:172–194CrossRefGoogle Scholar
  32. Sanz JL, Culubret E, de Ferrer J, Moreno A, Berna JL (2003) Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors. Biodegradation 14:57–64CrossRefGoogle Scholar
  33. Satoh A, Vudikaria LQ, Kurano N, Miyachi S (2005) Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environ Int 31:713–722CrossRefGoogle Scholar
  34. Swedmark M, Braten B, Emanuesson E, Granmo A (1971) Biological effects of surface-active agents on marine animals. Marine Biol 9:183–201CrossRefGoogle Scholar
  35. Tsvetnenko Y, Evans L (2002) Improved approaches to ecotoxicity testing of petroleum products. Mar Poll Bull 45:148–156CrossRefGoogle Scholar
  36. Tzovenis I, Triantphyllidis G, Naihong X, Chatzinikolaou E, Papadopoulou K, Xouri G, Tafas T (2004) Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquaculture food chain. Aquaculture 230:457–473CrossRefGoogle Scholar
  37. USEPA, United States Environmental Protection Agency (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th edn. EPA-821-R-02–013. USEPA, Office of Water, Washington, DCGoogle Scholar
  38. Weiner JA, De Lorenzo ME, Fulton MH (2004) Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aqua Toxicol 68:121–128CrossRefGoogle Scholar
  39. Yap CK, Ismail A, Omar H, Tan SG (2004) Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer consumer (Perna viridis). Environ Int 29:1097–1104CrossRefGoogle Scholar
  40. Ying G (2006) Fate, behaviour and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. C. Garrido-Perez
    • 1
  • J. A. Perales-VargasMachuca
    • 1
  • E. Nebot-Sanz
    • 1
  • D. Sales-Márquez
    • 1
  1. 1.Department of Chemical Engineering, Food Technologies and Environmental Technologies, Faculty of Marine and Environmental SciencesUniversity of CadizPuerto RealSpain

Personalised recommendations