Skip to main content

Advertisement

Log in

Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In this study, eleven commonly used antibiotics including sulfonamides, tetracyclines, aminoglycosides, fluoroquinolones, and beta-lactams were evaluated for their acute and chronic aquatic toxicities using standard test organisms e.g., Vibrio fischeri, Daphnia magna, Moina macrocopa, and Oryzias latipes. Among the antibiotics tested for acute toxicity, neomycin was most toxic followed by trimethoprim, sulfamethoxazole and enrofloxacin. Sulfamethazine, oxytetracycline, chlortetracycline, sulfadimethoxine and sulfathiazole were of intermediate toxicity, while ampicillin and amoxicillin were least toxic to the test organisms. There were no trends in sensitivity among test organisms or among different classes of the antibiotics. Only the beta-lactam class was the least toxic. In chronic toxicity test, neomycin affected reproduction and adult survival of D. magna and M. macrocopa with low mg/l levels exposure. Predicted no effect concentrations (PNECs) were derived from the acute and chronic toxicity information gleaned from this study and from literature. When the PNECs were compared with measured environmental concentrations (MECs) reported elsewhere for the test compounds, hazard quotients for sulfamethoxazole, sulfathiazole, chlortetracycline, oxytetracycline, and amoxicillin exceeded unity, which suggests potential ecological implication. Therefore, further studies including monitoring and detailed toxicological studies are required to assess potential ecological risk of these frequently used veterinary antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alder CA, McArdell CS, Golet EM, Ibric S, Molnar E, Nipales NS, Giger W (2001) Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during waste water treatment and in ambient water in Switzerland. In: Doughton CG, Jones-Lepp I (eds) Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. Symposium Series 791. American Chemical Society, Washington, DC, pp 56–69

    Google Scholar 

  • Andreozzi R, Marotta R, Paxeus N (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  • Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38:3291–3301

    Article  CAS  Google Scholar 

  • Bayer (1997) Baytril 10% injection: safety datasheet 345354/01. Bayer, Newbury, UK

    Google Scholar 

  • Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ (2002) Review of veterinary medicines in the environment. Environment Agency R + d Tech Rep P 6-012/8. Environment Agency, Bristol, UK

    Google Scholar 

  • Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218

    Article  CAS  Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Sanderson H, Sibley PK, Solomon KR (2004) Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environ Toxicol Chem 23:371–382

    Article  CAS  Google Scholar 

  • Brain RA, Hanson ML, Solomon KR, Brooks BW (2008) Aquatic plants exposed to pharmaceuticals: effects and risk. Rev Environ Contam Toxicol 192:67–115

    Article  CAS  Google Scholar 

  • Carlsson C, Johansson AK, Alvan G, Bergman K, Kuhler T (2006) Are pharmaceuticals potent environmental pollutants? Part I, environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87

    Article  CAS  Google Scholar 

  • Choi K, Kim Y, Jung JY, Kim M, Kim C, Kim N, Park J (2008) Occurrences and ecological risk of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ Toxicol Chem 27(3):711–719

    Article  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31(1):36–44

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment, agents of subtle change? Environ Health Perspect 107:907–993

    Article  CAS  Google Scholar 

  • Davis ML, Lofthouse TJ, Stamm JM (1993) Aquatic photodegradation of 14C-sarafloxicin hydrochloride. Abstr Pap Am chem S 205:91

    Google Scholar 

  • Davy M, Petrie R, Smrche kL, Kuchnicki T, Francosi D (2001) Proposal to update non-target plant todicity testing under NAFTA, USEPA, Washington, DC. http://www.epa.gov/scipoly/sap/

  • Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    Article  CAS  Google Scholar 

  • Elmund GK, Morrison SM, Grant DW, Nevins Sr MP (1971) Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull Environ Toxicol 6:129–132

    Article  CAS  Google Scholar 

  • European Medicines Agency (EMEA) (2006) Guideline on environmental impact assessment for veterinary medicinal products. In support of the VICH guidelines GL6 and GL38, pp 38–39

  • Ferrari B, Paxeus N, Giudice RL, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters, study of carbamazepine, clofbric acid, and diclofenac. Ecotoxicol Environ Safety 55:359–370

    Article  CAS  Google Scholar 

  • Forth W, Henschler D, Rummel W, Starke K (1992) Allgemeine und spezielle Pharmakologie und Toxikologie, 6th edn. Wissenschafts, Mannheimr, Germany

  • Garcia GG, Nandini S, Sarma SSS (2004) The effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). Bull Environ Contam Toxicol 72:717–724

    CAS  Google Scholar 

  • Grist EPM, Crane M, Jones C, Whitehouse P (2003) Estimation of demographic toxicity through the double bootstrap. Water Res 37:618–626

    Article  CAS  Google Scholar 

  • Halley BA, VandenHeuvel WJA, Wislocki PG (1993) Environmental effects of the usage of avemectins in livestock. Vet parasitol 48:109–125

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nor Nielsen S, Lanzky PF, Ingerslev F, Holten-Lützhøft HC, Jøbrgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment. A review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hamscher G, Abu-Quare A, Sczesny S, Höper H, Nau H (2000) Determination of tetracyclines and tylosin in soil and water samples from agricultural areas in lower Saxony. In: van Ginkel LA, Ruiter A (eds) Proceedings of the Euroresidue IV conference, Veldhoven, Netherlands, 8–10 May 2000. National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands, pp 522–526

  • Hirsh R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  Google Scholar 

  • Holten-Lützhøft HC, Halling-Sørensen B, Jøbrgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6

    Google Scholar 

  • Hughes, JS (1973) Acute toxicity of thirty chemicals to stripes bass (Morone sazatilis). Presented at the Western Association of State Game and Fish Commissioners in Salt Lake City, Utah.

  • Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 345:87–98

    Google Scholar 

  • Jensen J (2001) Veterinary medicines and soil quality. The danish situation as an example. In: Daughton, CG, Jones-Lepp T (eds) Pharmaceuticals and personal care products in the environment. scientific and regulatory issues. American Chemical Society—American Chemical Society Symposium Series 791:282–302

  • Jung J, Kim Y, Kim J, Jeong D, Choi K (2008) Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna. Ecotoxicology 17:37–45

    Article  CAS  Google Scholar 

  • Kashian DR, Dodson SI (2004) Effects of vertebrate hormones on development and sex determination in Daphnia magna. Environ Toxicol Chem 23:1282–1288

    Article  CAS  Google Scholar 

  • Katz SE (1980) The effects of human health. In: Subtherapeutic use of antimicrobials in animal feeds. National Academy of Sciences, Washington, DC

  • Kim Y, Choi K, Jung JY, Park S, Kim P, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams 1999–2000. A national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Korea Food and Drug Administration (KFDA) (2005) Establishment of control system of antibiotics for livestocks. Seoul, Korea, pp 30–32

  • Krebs CJ (1985) Ecology: the experimental analysis of distribution and abundance. Harper & Row, New York

    Google Scholar 

  • Kűmmerer K (2001) Pharmaceuticals in the environment, sources, fate, effects and risks. Berlin, Springer-Verlag

  • Levey SB (1992) The antibiotic paradox, how miracle drugs are destroying the miracle. Plenum Publication, New York

    Google Scholar 

  • Lissemore L, Hao C, Yang P, Sibley PK, Mabury S, Solomon KR (2006) An exposure assessment for selected pharmaceuticals within a watershed in South Ontrio. Chemosphere 64:717–729

    Google Scholar 

  • Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225

    Article  CAS  Google Scholar 

  • Metcalfe C (2003) Pharmaceuticals in the Canadian environment. In: Kümmerer K (ed) Pharmaceuticals in the environment, pp 67–90

  • Meyer MT, Bumgarner JE, Varns JL, Daughtridge JV, Thurman EM, Hostetler KA (2000) Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Sci Total Environ 248:181–187

    Google Scholar 

  • Migliore L, Brambilla G, Grassitellis A, Dojmi di Delupis G (1993) Toxicity and bioaccumulation of Sulfadimethoxine in Artemia (Crustacea, Anostraca). Int J Salt Lake Res 2(2):141–152

    Article  Google Scholar 

  • Nawaz MS, Erickson BD, Khan AA, Khan SA, Pothuluri JV, Rafii F, Sutherland JB, Wagner D, Cerniglia CE (2001) Human health impact and regulatory issues involving antimicrobial resistance in the food animal production environment. Regulat Res Persp 1:1–10

    Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Acute toxicity of widely used pharmaceuticals in aquatic species, Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicol Environ Safety 61:413–419

    Article  CAS  Google Scholar 

  • Oh SR (2007) Development of a standard 7-day chronic toxicity test method using indigenous aquatic macroinvertebrate Moina macrocopa. MPH Thesis, Seoul National University

  • Oka H, Ikai Y, Kawamura N, Yamada M Harada K-I, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37:226–231

    Article  CAS  Google Scholar 

  • Organization of Economic Cooperation, Development (OECD). (1993a) Guideline for testing of chemicals, guideline 202. Daphnia sp., acute immobilization test and reproduction test. OECD, Paris

    Google Scholar 

  • Organization of Economic Cooperation, Development (OECD). (1993b) Guidelines for testing of chemicals, guideline 203, fish acute toxicity test. OECD, Paris

    Google Scholar 

  • Perret D, Gentili A, Marchese S, Greco A, Curini R (2006) Sulphonamide pesidues in Italian surface and drinking waters: a small scale reconnaissance. Chromatographia 63:225–232

    Article  CAS  Google Scholar 

  • Petrusek A (2002) Moina (Crustacea: Anomopoda, Moinidae) in the Czech Republic: A review. Acta Soc Zool Bohem 66:213–220

    Google Scholar 

  • Porter KG, Orcutt JD Jr (1977) Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue–green algae for Daphnia. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, NH, pp 268–281

    Google Scholar 

  • Pro J, Ortiz JA, Boleas S, Fernández C, Carbonell G, Tarazona JV (2003) Effect assessment of antimicrobial pharmaceuticals on the aquatic plant Lemna minor. Bull Environ Contam Toxicol 70:290–295

    Google Scholar 

  • Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24(2):423–430

    Google Scholar 

  • Roembke J, Knacker T, Stahlschmidt-Allner P (1996) Umweltprobleme durch Arzneimittel (Literature review on environmental aspects of human and veterinary drugs), UBA-Texte 60/96, Federal Environmental Agency Germany

  • Roff DA (2001) Age and size at maturity. In: Fox CW, Roff DA, Fairbairn DJ (eds) Evolutionary ecology. Concepts and case studies. Oxford University Press, New York, pp 99–127

    Google Scholar 

  • Sarmah SSS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health Part B 41:1417–1430

    Google Scholar 

  • Sarmah SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall BA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. A review. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Schallenberg M, Armstrong A (2004) Assessment of antibiotic activity in surface water of the lower Taieri Plain and impacts on aquatic bacteria in Lake Waipori, South Otago, New Zealand. N Z J Mar Freshwater Res 38:19–28

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:245–3260

    Article  Google Scholar 

  • US EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. EPA-821-R-02-012. Office of Research and Development. Washington DC, USA

    Google Scholar 

  • Van Leeuwen CJ, Moberts F, Niebeek G (1985) Aquatic toxicological aspects of dithiocarbamates and related compounds. II. Effects on survival, reproduction and growth of Daphnia magna. Aquat Toxicol 7:165–175

    Article  Google Scholar 

  • Vesela S, Vijverberg J (2007) Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species. Aquat Ecol 41:67–73

    Article  CAS  Google Scholar 

  • Webb SF (2001) A data-based perspective on the environmental risk assessment of human pharmaceuticals. I. Collation of available ecotoxicity data. In: Kümmerer K (ed) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Heidelberg, pp 175–201

    Google Scholar 

  • Wilford WA (1966) Toxicity of 22 therapeutic compounds to six fishes. US Dept. of the Interior, Fish and Wildlife Service, Bureau of Sports Fisheries and Wildlife, Washington DC (Resource Publication 35)

  • Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730

    Article  CAS  Google Scholar 

  • Yang S, Cha J, Carlson K (2004) Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom 18:2131–2145

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungho Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Choi, K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17, 526–538 (2008). https://doi.org/10.1007/s10646-008-0209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0209-x

Keywords

Navigation