Advertisement

Ecotoxicology

, Volume 14, Issue 5, pp 573–588 | Cite as

Influence of Non-point Source Pollution on Riverine Fish Assemblages in South West France

  • Alonso Aguilar Ibarra
  • Francis Dauba
  • Puy Lim
Article

Abstract

The relationship between non-point source pollution (NSP) and fish assemblages in the Garonne basin, SW France was studied. Two independent data sets were coupled, one containing 20 physico-chemical variables and another containing 40 fish species in 84 study sites. Species were classified in guilds according to their feeding habitat and their diet composition. The physico-chemical variables were log-transformed and standardized for a factor analysis in which they were grouped into four factors which accounted for 80% of the total variability. These were named according to factor loadings (i.e. a measure of the variance of a given variable) whose absolute values were larger than 0.5. Hence, the first factor (F1) was formed by variables linked to NSP, most notably by sodium, chloride, potassium, orthophosphates, nitrites and chemical oxygen demand. The second factor (F2) was related to alkalinity (i.e. bicarbonates, calcium, conductivity and pH). The third factor (F3) included oxygen saturation rate and dissolved oxygen, and F4 combined both temperature and flow. Factor scores (i.e. weighted sums of the original variables) were then introduced in stepwise multiple regression models as explanatory variables of log-transformed fish species richness of trophic guilds. The NSP factor was significant (p < 0.05) for the following models: benthic omnivores (r 2 = 0.66), all species (r 2 = 0.65), total benthic species (r 2 = 0.63), total water-column species (r 2 = 0.57), benthic invertivores (r 2 = 0.32) and water-column invertivores (r 2 = 0.16). The guilds for which NSP was not significant were water-column omnivores, water-column piscivores and benthic detritivores. Thus, there was evidence of an inversely proportional association, though not causation, of NSP with species richness of riverine fish trophic guilds on a large spatio-temporal scale. Fish assemblages may respond in different ways to NSP depending on their species composition, on the region and on the scale, and not only to physico-chemical properties of water.

Keywords

non-point source pollution trophic guilds riverine fish assemblages water quality Garonne basin 

Notes

Acknowledgments

Comments from two anonymous referees notably improved a former version of this paper. Laure Geoffroy provided insightful remarks on ecotoxicological issues as Michele Scardi did for the methodology. Benjamin Esperance contributed with useful information on the Garonne basin and produced Fig. 1. The Adour-Garonne Water Agency allowed the access to their data base. The French Fisheries Council (CSP), regional associations of fishermen and a number of people were involved in sampling surveys. This study was partly sponsored by the Mexican-French Cooperation Program Conacyt-Sfere (no. 131742) and the Association Toulousaine d’Ichthyologie Appliquée.

References

  1. Adams Kszos L., Beauchamp J.J., Stewart A.J., (2003). Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodiumEcotoxicology 12: 427–37CrossRefPubMedGoogle Scholar
  2. AEAG (Agence de l’Eau Adour-Garonne) (1997). Atlas et Données sur l’Eau. Toulouse: DIREN de Bassin Adour-GaronneGoogle Scholar
  3. Alabaster, J.S. and Llyod, R. (1982). Water Quality Criteria for Freshwater Fish. Rome and London: F.A.O. and Butterworth ScientificGoogle Scholar
  4. Amisah S., Cowx I.G., (2000). Response of the fish populations of the River Don in South Yorkshire to water quality and habitat improvementsEnviron. Pollut. 108: 191–9CrossRefPubMedGoogle Scholar
  5. Andres S., Ribeyre F., Tourencq J.N., Boudou A., (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France)Sci. Total Environ. 248: 11–25CrossRefPubMedGoogle Scholar
  6. Angelier, E. (2001). Ecologie des Eaux Courantes. Paris: Editions Tec & DocGoogle Scholar
  7. Angermeier P.L., (1995). Ecological attributes of extinction-prone species: loss of freshwater fishes of VirginiaConserv. Biol. 9: 143–58CrossRefGoogle Scholar
  8. Angermeier P.L., Smogor R.A., (1995). Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributionsCan. J. Fish. Aquat. Sci. 52: 936–49Google Scholar
  9. Ankley G.T., Katko A., Arthur J.W., (1990). Identification of ammonia as an important sediment-associated toxicant in the lower Fox river and Green Bay, WisconsinEnviron. Toxicol. Chem. 9: 313–22CrossRefGoogle Scholar
  10. Arrignon J., (1998). Aménagement Piscicole des Eaux Douces. Paris: Editions Tec & DocGoogle Scholar
  11. Berkman H.E., Rabeni C.F., (1987). Effect of siltation on fish communitiesEnviron. Biol. Fish. 50: 133–47Google Scholar
  12. Berrebi-dit-Thomas R., Belliard J., Boët P., (1998). Caractéristiques des peuplements piscicoles sensibles aux altérations du milieu dans les cours d’eau du bassin de la SeineBull. Franç. Pêche Piscicult. 348: 47–64Google Scholar
  13. Bismuth, C. (2000). Toxicologie Clinique. Paris: Médecine-Sciences, FlammarionGoogle Scholar
  14. Cooper S., Diehl S., Kratz K., Sarnelle O., (1998). Implications of scale for patterns and processes in stream ecologyAust. J. Ecol. 23: 27–40CrossRefGoogle Scholar
  15. Crisp D.T., (1996). Environmental requirements of common European salmonid fish species in freshwater with particular reference to physical and chemical aspectsHydrobiologia 323: 201–21CrossRefGoogle Scholar
  16. Cuinat R., (1971). Principaux caractères démographiques observés dans 50 rivières à truites françaises. Influence de la pente et du calciumAnn. Hydrobiol. 2: 187–67Google Scholar
  17. Dauba F., Lek S., Mastrorillo S., Copp G.H., (1997). Long-term recovery of macrobenthos and fish assemblages after water pollution abatement measures in the river Petite Baïse (France)Arch. Environ. Contam. Toxicol. 33: 277–85CrossRefGoogle Scholar
  18. Dauta A., Lapaquellerie Y., Maillet N., (1999). Role of the dams on the River Lot on two types of pollution: point-sources (cadmium) and non-point sources (phosphorus)Hydrobiologia 410: 325–9CrossRefGoogle Scholar
  19. Eklöv A.G., Greenberg L.A., Brönmark C., Larsson P., Berglund O., (1998). Response of stream fish to improved water quality: a comparison between the 1960s and 1990s Freshwat. Biol. 40: 771–82CrossRefGoogle Scholar
  20. Eklöv A.G., Greenberg L.A., Brönmark C., Larsson P., Berglund O., (1999). Influence of water quality, habitat and species richness on brown trout populationsJ. Fish Biol. 54: 33–43CrossRefGoogle Scholar
  21. Etchanchu D., Probst J.L., (1988). Evolution of the chemical composition of the Garonne river during the period 1971–1984Hydrol. Sci. J. 33: 243–56CrossRefGoogle Scholar
  22. Everitt, B.S. and Dunn, G. (1991). Applied Multivariate Data Analysis. London: Edward ArnoldGoogle Scholar
  23. Fausch K.D., Lyons J., Karr J.R., Angermeier P.L., (1990). Fish communities as indicators of environmental degradationAm. Fish. Soc. Symp. 8: 123–44Google Scholar
  24. Fitzgerald D.G., Kott E., Lanno R.P., Dixon D.G., (1998). A quarter century of change in the fish communities of three small streams modified by anthropogenic activitiesJ. Aquat. Ecosyst. Stress Recovery 6: 111–27CrossRefGoogle Scholar
  25. Gozlan R.E., Mastrorillo S., Dauba F., Tourenq J.N., Copp G.H., (1998). Multi-scale analysis of habitat use during late summer for 0+ fishes in the River Garonne (France)Aquat. Sci. 60: 99–117CrossRefGoogle Scholar
  26. Harding J.S., Benfield E.F., Bolstad P.V., Helfman G.S., Jones E.B.D., (1998). Stream biodiversity: the ghost of land use pastProc. Natl. Acad. Sci. USA 95: 14843–7CrossRefPubMedGoogle Scholar
  27. Hart B.T., Maher B., Lawrence I., (1999). New generation water quality guidelines for ecosystem protectionFreshwat. Biol. 41: 347–59CrossRefGoogle Scholar
  28. Havens K.E., (1999). Correlation is not causation: a case study of fisheries, trophic state and acidity in Florida (USA) lakesEnviron. Pollut. 106: 1–4CrossRefGoogle Scholar
  29. Hendry K., Cragg-Hine D., O’Grady M., Sambrook H., Stephen A., (2003). Management of habitat for rehabilitation and enhancement of salmonid stocksFish. Res. 62: 171–92CrossRefGoogle Scholar
  30. Hughes R.M., Gammon J.R., (1987). Longitudinal changes in fish assemblages and water quality in the Willamette River, OregonTrans. Am. Fish. Soc. 116: 196–209CrossRefGoogle Scholar
  31. Hughes R.M., Kaufman P.R., Herlihy A.T., Kincaid T.M., Reynolds L., Larsen D.P., (1998). A process for developing and evaluating indices of fish assemblage integrityCan. J. Fish. Aquat. Sci. 55: 1618–31CrossRefGoogle Scholar
  32. Hutagalung R.A., Lim P., Belaud A., Lagarrigue T., (1997). Effets globaux d’une agglomération sur la typologie ichtyenne d’un fleuve: cas de la Garonne à Toulouse (France) Ann. Limnol. 33: 263–79Google Scholar
  33. Jackson D.A., Peres-Nieto P.R., Olden J.D., (2001). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factorsCan. J. Fish. Aquat. Sci. 58: 157–70CrossRefGoogle Scholar
  34. Kallis G., Butler D., (2001). The EU Water Framework Directive: measures and implicationsWater Policy 3: 125–42CrossRefGoogle Scholar
  35. Karr J.R., Fausch K.D., Angermeier P.L., Yant P.R., Schlosser I.J., (1986). Assessing biological integrity in running waters: a method and its rationaleIllinois Nat. Hist. Survey Spec. Publ. 5: 1–28Google Scholar
  36. Keith P., (2000). The part played by protected areas in the conservation of threatened French freshwater fishBiol. Conserv. 92: 265–73CrossRefGoogle Scholar
  37. Kestemont P., Didier J., Depiereux E., Micha J.C., (2000). Selecting ichthyological metrics to assess river basin ecological qualityArch. Hydrobiol. Suppl. (Monogr. Stud.) 121: 321–48Google Scholar
  38. Kilgour B.W., Barton D.R., (1999). Associations between stream fish and benthos across environmental gradients in southern Ontario, CanadaFreshwat. Biol. 41: 553–66CrossRefGoogle Scholar
  39. Landis W.G., Yu M.-H., (1999). Introduction to Environmental Toxicology: Impacts of Chemicals upon Ecological Systems CRC Press, Lewis Publishers Boca RatonGoogle Scholar
  40. Leynaud G., Trocherie F., (1980). Effets toxiques des pollutions sur la faune piscicole In: Pesson P., (ed.) La Pollution des Eaux Continentales: Incidence sur les Biocénoses Aquatiques Paris: Gauthier-Villars pp. 147–69Google Scholar
  41. Lim P., Labat R., (1979). Récupération d’une rivière polluée: la Petite BaïseAnn. Limnol. 115: 153–71Google Scholar
  42. Lyons J., Piette R.R., Niermeyer K.W., (2001). Development, validation, and application of a fish-based index of biotic integrity for Wisconsin’s large warmwater riversTrans. Am. Fish. Soc. 130: 1077–94CrossRefGoogle Scholar
  43. Manly B.F.J., (1995).Multivariate Statistical Methods: A Primer Chapman & Hall New YorkGoogle Scholar
  44. Mann R.K.H., (1996). Environmental requirements of European non-salmonid fish in riversHydrobiologia 323: 223–35CrossRefGoogle Scholar
  45. Matthews W.J., (1998). Patterns in Freshwater Fish Ecology. Chapman & Hall New YorkGoogle Scholar
  46. Michel P., Oberdorff T., (1995). Feeding habits of fourteen European freshwater fish speciesCybium 19: 5–46Google Scholar
  47. Monod G., (2001). Le poisson: cible et révélateur de la pollution chimique. In: Neveu A., Riou C., Bonhome R., Chassin P., Papy F., (Eds) L’Eau dans l’Espace Rural: Vie et Milieux Aquatiques Paris: INRA editions pp. 173–97Google Scholar
  48. Oberdorff T., Hughes R.M., (1992). Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine basin, FranceHydrobiologia 228: 117–30CrossRefGoogle Scholar
  49. Oberdorff T., Gilbert E., Lucchetta J.C., (1993). Patterns of fish species richness in the Seine River basin, FranceHydrobiologia 259: 157–67CrossRefGoogle Scholar
  50. Oberdorff T., Pont D., Hugueny B., Porcher J.P., (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in FranceFreshwat. Biol. 47: 1720–34CrossRefGoogle Scholar
  51. O’Neill R.V., (1999). Recovery in complex ecosystemsJ. Aquat. Ecosyst. Stress Recovery 6: 181–7Google Scholar
  52. Peierls B.L., Carraco N.E., Pace M.L., Cole J.J., (1991). Human influence on river nitrogenNature 350: 386–7CrossRefGoogle Scholar
  53. Piégay H., Dupont P., Faby J.A., (2002). Questions of water resources management. Feedback on the implementation of the French SAGE and SDAGE plans (1992–2001)Water Policy 4: 239–62CrossRefGoogle Scholar
  54. Poff N.L., Allan J.D., (1995). Functional organization of stream fish assemblages in relation to hydrologic variabilityEcology 76: 606–27CrossRefGoogle Scholar
  55. Rahel F.J., Hubert W.A., (1991). Fish assemblage and habitat gradients in a Rocky Mountain-Great Plains stream: biotic zonation and additive patterns of community change Trans. Am. Fish. Soc. 120: 319–32CrossRefGoogle Scholar
  56. Reash R.J., Pigg J., (1990). Physicochemical factors affecting the abundance and species richness of fishes in the Cimarron riverProc. Oklahoma Acad. Sci. 70: 23–8Google Scholar
  57. Resh V.H., Brown A.V., Covich A.P., Gurtz M.E., Hiram W.L., Minshall G.W., Reice S.R., Sheldon A.L., Wallace J.B., Wissmar R.C., (1988). The role of disturbance in stream ecologyJ. North Am. Benthol. Soc. 7: 433–55CrossRefGoogle Scholar
  58. Revenga C., Murray S., Abramovits J., Hammond A., (1998). Watersheds of the World: Ecological Value and Vulnerability. World Resources Institute WashingtonGoogle Scholar
  59. Sauvage S., Teissier S., Vervier P., Améziane T., Garabétian F., Delmas F., Caussade B., (2003). A numerical tool to integrate biophysical diversity of a large regulated river: hydrobiogeochemical bases. The case of the Garonne River (France)River Res. Appl. 19: 181–98CrossRefGoogle Scholar
  60. Schlosser I.J., (1990). Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment Environ. Manage. 14: 621–8CrossRefGoogle Scholar
  61. Schlosser I.J., (1991). Stream fish ecology: a landscape perspectiveBioScience 41: 704–12CrossRefGoogle Scholar
  62. Scott M.C., Hall L.W., (1997). Fish assemblages as indicators of environmental degradation in Maryland coastal plain streamsTrans. Am. Fish. Soc. 126: 349–60CrossRefGoogle Scholar
  63. Seegert G., (2000). Considerations regarding development of index of biotic integrity metrics for large riversEnviron. Sci. Policy 3: S99–106CrossRefGoogle Scholar
  64. Semhi K., Suchet P.A., Clauer N., Probst J.L., (2000). Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basinAppl. Geochem. 15: 865–78CrossRefGoogle Scholar
  65. Siligato S., Böhmer J., (2002). Evaluation of biological integrity of a small urban stream system by investigating longitudinal variability of the fish assemblageChemosphere 47: 777–88CrossRefPubMedGoogle Scholar
  66. Simon T.P., Stewart P.M., (1998). Application of an index of biotic integrity for dunal, palustrine wetlands: emphasis on assessment of nonpoint source landfill effects on the Grand Calumet LagoonsAquat. Ecosyst. Health Manage. 1: 63–74CrossRefGoogle Scholar
  67. Sipponen M., Muotka M., (1996). Factors effecting the demand for recreational fishing opportunities in Finnish lakes during the 1980sFish. Res. 26: 309–323CrossRefGoogle Scholar
  68. Smogor R.A., Angermeier P.L., (2001). Determining a regional framework for assessing biotic integrity of Virginia streamsTrans. Am. Fish. Soc. 130: 18–35CrossRefGoogle Scholar
  69. Steiger J., James M., Gazelle F., (1998). Channelization and consequences on floodplain system functioning on the Garonne river, SW FranceRegulat. Rivers: Res. Manage. 14: 13–23CrossRefGoogle Scholar
  70. Twitchen I.D., Eddy F.B., (1994). Sublethal effects of ammonia on freshwater fish. In: Müller R., Lloyd R., (eds) Sublethal and Chronic Effects of Pollutants on Freshwater Fish Oxford: Fishing News Books and FAO pp. 135–47Google Scholar
  71. Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R., Cushing C.E., (1980). The river continuum conceptCan. J. Fish. Aquat. Sci. 37: 130–7CrossRefGoogle Scholar
  72. Vervier P., Pinheiro A., Fabre A., Pinnay G., Fustec E., (1999). Spatial changes in the modalities of N and P inputs in a rural river networkWater Res. 33: 95–104CrossRefGoogle Scholar
  73. Vila-Gispert A., García-Berthou E., Moreno-Amich R., (2002). Fish zonation in a Mediterranean stream: effects of human disturbancesAquat. Sci. 64: 163–70CrossRefGoogle Scholar
  74. Wang L., Lyons J., Kanehl P.D., Gatti R., (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streamsFisheries 7: 6–12CrossRefGoogle Scholar
  75. Wang L., Lyons J., Kanehl P., Bannerman R., Emmons E., (2000). Watershed urbanization and changes in fish communities in southeastern Wisconsin streamsJ. Am. Water Res. 36: 1173–5CrossRefGoogle Scholar
  76. Wang L., Lyons J., Kanehl P.D., Bannerman R., (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scalesEnviron. Manage. 28: 255–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Alonso Aguilar Ibarra
    • 1
    • 2
  • Francis Dauba
    • 1
  • Puy Lim
    • 1
  1. 1.Ecole Nationale Supérieure Agronomique de ToulouseAuzeville-TolosaneFrance
  2. 2.Universidad Nacional Autónoma de México México

Personalised recommendations