, Volume 14, Issue 1–2, pp 135–147 | Cite as

Patterns of Hg Bioaccumulation and Transfer in Aquatic Food Webs Across Multi-lake Studies in the Northeast US

  • Celia Y. Chen
  • Richard S. Stemberger
  • Neil C. Kamman
  • Brandon M. Mayes
  • Carol L. Folt


The northeastern USA receives some of the highest levels of atmospheric mercury deposition of any region in North America. Moreover, fish from many lakes in this region carry Hg burdens that present health risks to both human and wildlife consumers. The overarching goal of this study was to identify the attributes of lakes in this region that are most likely associated with high Hg burdens in fish. To accomplish this, we compared data collected in four separate multi-lake studies. Correlations among Hg in fish (4 studies) or in zooplankton and fish (2 studies) and numerous chemical, physical, land use, and ecological variables were compared across more than 150 lakes. The analysis produced three general findings. First, the most important predictors of Hg burdens in fish were similar among datasets. As found in past studies, key chemical covariates (e.g., pH, acid neutralizing capacity, and SO4) were negatively correlated with Hg bioaccumulation in the biota. However, negative correlations with several parameters that have not been previously identified (e.g., human land use variables and zooplankton density) were also found to be equally important predictors. Second, certain predictors were unique to individual datasets and differences in lake population characteristics, sampling protocols, and fish species in each study likely explained some of the contrasting results that we found in the analyses. Third, lakes with high rates of Hg bioaccumulation and trophic transfer have low pH and low productivity with relatively undisturbed watersheds suggesting that atmospheric deposition of Hg is the dominant or sole source of input. This study highlights several fundamental complexities when comparing datasets over different environmental conditions but also underscores the utility of such comparisons for revealing key drivers of Hg trophic transfer among different types of lakes.


mercury bioaccumulation aquatic food web plankton fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, A.P., Whittier, T.R., Larsen, D.P., Kaufmann, P.R., O’Connor, R.J., Hughes, R.M., Stemberger, R.S., Dixit, S.S., Brinkhurst, R.O., Herlihy, A.T., Paulsen, S.G. 1999Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land useCan. J. Fish. Aquat. Sci.56202940Google Scholar
  2. Back, R.C., Watras, C.J. 1995Mercury in zooplankton of Northern Wisconsin lakes – taxonomic and site-specific trendsWater Air Soil Pollut.8093138Google Scholar
  3. Cabana, G., Tremblay, A., Kalff, J., Rasmussen, J.B. 1994Pelagic food-chain structure in Ontario Lakes – a determinant of mercuy levels in lake trout (Salvelinus-namaycush)Can. J. Fish. Aquat. Sci.5138189CrossRefGoogle Scholar
  4. Chen, C.Y., Folt, C.L. 2000Bioaccumulation and diminution of arsenic and lead in a freshwater food webEnviron. Sci. Technol.34387884Google Scholar
  5. Chen, C.Y., Stemberger, R.S., Klaue, B., Blum, J.D., Pickhardt, P.C., Folt, C.L. 2000Accumulation of heavy metals in food web components across a gradient of lakesLimnol. Oceanogr.45152536Google Scholar
  6. Chen, C.Y. and Folt, (2005) C.L. High plankton densities reduce mercury biomagnification. Environ Sci. Technol. 39, 115–121Google Scholar
  7. Choi, S.C., Chase, T., Bartha, R. 1994Metabolic pathways leading to mercury methylation in Desulfovibrio–desulfuricans LsAppl. Environ. Microbiol.60407277PubMedGoogle Scholar
  8. DiFranco, J., Bacon, L., Mower, B. and Courtemanch, D. (1995). Fish tissue contamination in Maine Lakes. State of Maine Department of Environmental ProtectionGoogle Scholar
  9. DiPasquale, M.M., Agee, J.L., Kieu, L.H. and Harms, H.A. (2004). Microbial mercury cycling in the San Francisco Bay sediments: from regions to the rhizosphere. E.O.S. Proc. 2004 A.G.U. Annual Symposium, Montreal, Canada. American Geophysical Union, Washington DC (AGU)Google Scholar
  10. Driscoll, C.T., Blette, C., Yan, C., Schofield, C.L., Munson, R., Holsapple, J. 1995The role of dissolved organic-carbon in the chemistry and bioavailability of mercury in remote Adirondack lakesWater Air Soil Pollut.80499508Google Scholar
  11. Driscoll, C.T., Holsapple, J., Schofield, C.L., Munson, R. 1998The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USABiogeochemistry4013746Google Scholar
  12. Essington, T.E., Houser, J.N. 2003The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perchTrans. Am. Fish. Soc.1325768Google Scholar
  13. Evers, D.C., Taylor, K.M., Major, A., Taylor, R.J., Poppenga, R.H., Scheuhammer, A.M. 2003Common loon eggs as indicators of methylmercury availability in North AmericaEcotoxicology126981PubMedGoogle Scholar
  14. Folt, C.L., Nislow, K.H., Power, M.E. 1998Implications of temporal and spatial scale for Atlantic salmon (Salmo salar) researchCan. J. Fish. Aquat. Sci.55921Google Scholar
  15. Gilmour, C.C., Riedel, G.S., Ederington, M.C., Bell, J.T., Benoit, J.M., Gill, G.A., Stordal, M.C. 1998Methylmercury concentrations and production rates across a trophic gradient in the northern EvergladesBiogeochemistry4032745Google Scholar
  16. Hakanson, L., Nilsson, A., Andersson, T. 1988Mercury in fish in Swedish lakesEnviron. Pollut.4914562PubMedGoogle Scholar
  17. Hall, B.D., Bodaly, R.A., Fudge, R.J.P., Rudd, J.W.M., Rosenberg, D.M. 1997Food as a dominant pathway of methylmercury uptake by fishWater Air Soil Pollut.1001324Google Scholar
  18. Hammerschmidt, C.R., Fitzgerald, W.F. 2004Geochemical controls on the production and distribution of Methylmercury in near-shore marine sedimentsEnviron. Sci. Technol.38148795PubMedGoogle Scholar
  19. Heyes, A., Moore, T.R., Rudd, J.W.M. 1998Mercury and methylmercury in decomposing vegetation of a pristine and impounded wetlandJ. Environ. Qual.2759199CrossRefGoogle Scholar
  20. Hintelmann, H., Harris, R., Heyes, A., Hurley, J.P., Kelly, C.A., Krabbenhoft, D.P., Lindberg, S., Rudd, J.W.M., Scott, K.J., St. Louis, V.L. 2002Reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALICUS studyEnviron. Sci. Technol.36503440PubMedGoogle Scholar
  21. Kainz, M., Lucotte, M., Parrish, C.C. 2002Methyl mercury in zooplankton – the role of size, habitat, and food qualityCan. J. Fish. Aquat. Sci.59160615Google Scholar
  22. Kamman, N.C., Burgess, N.M., Driscoll, C.T., Simonin, H.A., Goodale, W., Linehan, J., Estabrook, R., Hutcheson, M., Major, A., Scheuhammer, A.M. and Scruton, D.A. (2005). Mercury in freshwater fish of northeast North America – a geographic perspective based on fish tissue monitoring databases. Ecotoxicology, 14, 163–180Google Scholar
  23. Kamman, N.C., Lorey, P.M., Driscoll, C.T., Estabrook, R., Major, A., Pientka, B., Glassford, E. 2004Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using a geographically randomized designEnviron. Toxicol. Chem.23194207Google Scholar
  24. Kamman, N.C., Driscoll, C.T., Estabrook, R., Evers, D.C. and Miller, E. (2003). Biogeochemistry of Mercury in Vermont and New Hampshire Lakes – An Assessment of Mercury in Waters, Sediments and Biota of Vermont and New Hampshire Lakes. Waterbury, VT: Comprehensive Final Project Report to USEPA. VT Department of Environmental ConservationGoogle Scholar
  25. Kramar, J., Goodale, W. and Kaur. (2005). Use of GIS as a decision support tool for predicting areas that represent mercury risk to humans and biota Ecotoxicology, this volumeGoogle Scholar
  26. Larsen, D.P., Stevens, D.L., Selle, A.R., Paulsen, S.G. 1991Environmental monitoring and assessment program, EMAP-surface waters: a northeast lakes pilotLake Reserv. Manage.7111CrossRefGoogle Scholar
  27. Liao, H., Pierce, C.L., Larscheid, J.G. 2002Diet dynamics of the adult piscivorous fish community in Spirit Lake, Iowa, USA 1995–1997Ecol. Freshw. Fish1117889Google Scholar
  28. Luoma, S.N., Van Geen, A., Lee, B.-G., Cloern, J.E. 1998Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuariesLimnol. Oceanogr.43100716CrossRefGoogle Scholar
  29. Mason, R.P., Reinfelder, J.R., Morel, F.M.M. 1995Bioaccumulation of mercury and methylmercuryWater Air Soil Pollut.8091521Google Scholar
  30. Miller, R.G.,Jr. 1981Simultaneous Statistical InferenceMcGraw HillNYGoogle Scholar
  31. Miller, E.K., VanArsdale, A. Keeler, J. and Kamman, N. (2005). Estimation and mapping of wet and dry mercury deposition across northeastern north America 14, 53–70Google Scholar
  32. NESCAUM. (2003). Mercury Emissions from Coal-Fired Plants. Report 031104Google Scholar
  33. Persson, L., Bystrom, P., Wahlstrom, E., Nijlunsing, A., Rosema, S. 2000Resource limitation during early ontogeny: constraints induced by growth capacity in larval and juvenile fishOecologia12245969Google Scholar
  34. Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B., Blum, J.D. 2002Algal blooms reduce the uptake of toxic methylmercury in freshwater food websProc. Natl. Acad. Sci. USA99441923PubMedGoogle Scholar
  35. Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B. and Blum, J.D. (2004). Impacts of zooplankton composition and algal␣enrichment on the accumulation of mercury in an experimental freshwater food web. Sci. Tot. Environ (in press)Google Scholar
  36. Prout, M.W., Mills, E.L., Forney, J.L. 1990Diet, growth, and potential competitive interactions between Age-O White Perch and Yellow Perch in Oneida lake, New YorkTrans. Am. Fish. Soc.11996675Google Scholar
  37. Rose, J., Hutcheson, M.S., West, C.R., Pancorbo, O., Hulme, K., Cooperman, A., DeCesare, G., Isaac, R., Screpetis, A. 1999Fish mercury distribution in massachusetts, USA lakesEnviron.l Toxic. Chem.18137079Google Scholar
  38. SAS Institute Inc, 1995 JMP Statistics and Graphics Guide. Version 3.1 of JMP, Cary (N.C.).Google Scholar
  39. Schael, D.M., Rudstam, L.G., Post, J.R. 1991Gape limitation and prey selection in larval Yellow Perch (Perca Flavescens), Fresh-water Drum (Aplodinotus Grunniens), and Black Crappie (Pomoxis Nigromaculatus)Can. J. Fish. Aquat. Sci.48191925CrossRefGoogle Scholar
  40. Simonin, H.A., Gloss, S.P., Driscoll, C.T., Schofield, C.L., Kretser, W.A., Karcher, R.W. and Symula, J. (1994). C.J. Watras and J.W. Huckabee (ed). Mercury Pollution Integration and Synthesis, pp. 457–69. Boca Raton, FL: Lewis Publishers.Google Scholar
  41. Stemberger, R.S., Chen, C.Y. 1998Fish tissue metals and zooplankton assemblages of northeastern US lakesCan. J. Fish. Aquat. Sci.5533952Google Scholar
  42. St. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Bloom, N.S., Flett, R.J. 1994Importance of wetlands as sources of methyl mercury to boreal forest ecosystemsCan. J. Fish. Aquat. Sci.51106576Google Scholar
  43. Suns, K., Hitchin, G. 1990Interrelationships between mercury levels in Yearling Yellow Perch, fish condition and water-qualityWater Air and Soil Pollut.5025565Google Scholar
  44. Watras, C.J., Bloom, N.S. 1992Mercury and methylmercury in individual zooplankton – Implications for bioaccumulationLimnol. Oceanogr.37131318Google Scholar
  45. Watras, C.J., Morrison, K.A., Host, J.S., Bloom, N.S. 1995Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakesLimnol. Oceanogr.4055665CrossRefGoogle Scholar
  46. Watras, C.J., Back, R.C., Halvorsen, S., Hudson, R.J.M., Morrison, K.A., Wente, S.P. 1998Bioaccumulation of mercury in pelagic freshwater food websSci. Tot. Environ.219183208Google Scholar
  47. Whittier, T.R., Paulsen, S.G., Larsen, D.P., Peterson, S.A., Herlihy, A.T., Kaufmann, P.R. 2002Indicators of ecological stress and their extent in the population of Northeastern Lakes: a regional-scale assessmentBioScience5223547Google Scholar
  48. Wong, C.K. 1993Effects of Chromium, Copper, Nickel, and Zinc on longevity and reproduction of the Cladoceran Moina Macrocopa Bull. Environ. Contam. Toxicol.5063339PubMedGoogle Scholar
  49. Wu, L., Culver, D.A. 1992Ontogenic diet shift in Lake Erie age-O Yellow Perch (Perca flavescens) – a size-related response to zooplankton densityCan. J. Fish. Aquat. Sci.49193237Google Scholar
  50. Yeardley, R.B., Lazorchak, J.M., Paulsen, S.G. 1998Elemental fish tissue contamination in northeastern US lakes: evaluation of an approach to regional assessmentEnviron. Toxicol. Chem.17187584Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Celia Y. Chen
    • 1
  • Richard S. Stemberger
    • 1
  • Neil C. Kamman
    • 2
  • Brandon M. Mayes
    • 1
  • Carol L. Folt
    • 1
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverNH
  2. 2.Vermont Department of Environmental ConservationWaterburyVT

Personalised recommendations