Advertisement

Ecotoxicology

, Volume 13, Issue 8, pp 739–755 | Cite as

Stress Proteins (hsp70, hsp60) Induced in Isopods and Nematodes by Field Exposure to Metals in a Gradient near Avonmouth, UK

  • Marie-José S. J. Arts
  • Ralph O. Schill
  • Thomas Knigge
  • Helga Eckwert
  • Jan E. Kammenga
  • Heinz-R. KÖhler
Article

Abstract

Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and transplanted isopods of the species Oniscus asellus and Porcellio scaber and the hsp60 response in transplanted nematodes of the species Plectus acuminatusin six field sites along the metal gradient. Considerable differences were detected in the stress responses between nematodes and isopods (isopods responded in a gradient-specific manner, nematodes did not), the two isopod species and the transplanted and resident specimens of each isopod species in the sites closest to the smelter, O. asellus residents showed high hsp70 levels while O. asellus transplanted from an unpolluted site displayed comparatively low hsp70 levels. For P. scaber, it was just the opposite. In resident isopod populations of both species, tolerant phenotypes were revealed in the most contaminated field sites. The hsp70 level in both isopod species was a suitable biomarker of effect (but of exposure only in non-tolerant individuals) even in long-term metal-contaminated field sites. The hsp60 response in the nematode alone was not a suitable biomarker for heavily contaminated soils. However, it had indicative value when related to the hsp70 response in the isopods and could be a suitable biomarker for less heavily contaminated soils.

Keywords

biomarker heat shock proteins nematode isopods metal polluted soil field bioassay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonting, C.F.C., Willemsen, B.M.F., Akkermans-Van Vliet, W., Bouvet, P.J.M., Koristee, G.J.J., Zehnder, A.J.B. 1992Additional characteristics of the polyphosphate-accumulating Acinetobacter strain 210A and its identification as Acinetobacter johnsonii FEMS Microbiol. Ecol.1025764Google Scholar
  2. Bradford, M.M. 1976A rapid and sensitive method for the quantification of microgram quantitites of protein utilizing the principle of protein-dye bindingAnal. Biochem.7224854CrossRefPubMedGoogle Scholar
  3. Chiang, H.-L., Terlecky, S.R., Plant, C.P., Dice, J.F. 1989A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteinsScience2463825PubMedGoogle Scholar
  4. Dallinger, R., Rainbow, P.S. 1993Ecotoxicology of Metals in Invertebrates.Lewis, ChelseaMichigan, USAGoogle Scholar
  5. De Boer, J.M., Overmars, H.A., Pomp, H.R., Davis, E.L., Zilverentant, J.F., Goverse, A., Smant, G., Stokkermans, J.P.W.G., Hussey, R.S., Gommers, F.J., Bakker, J., Schots, A. 1996Production and characterization of monoclonal antibodies to antigens from second-stage juveniles of the potato cyst-nematode, Globodera rostochiensis Fundam. Appl. Nematol.1954554Google Scholar
  6. De Pomerai, D.I. 1996Heat-shock proteins as biomarkers of pollutionHum. Exp. Toxicol.1527985CrossRefPubMedGoogle Scholar
  7. Drobne, D., Hopkin, S.P. 1995The toxicity of zinc to terrestrial isopods in a “standard” laboratory testEcotoxicol. Environ. Safety3116PubMedGoogle Scholar
  8. Dunlap, D.Y., Matsumura, F. 1997Development of broad spectrum antibodies to heat shock protein 70s as biomarkers for detection of multiple stress by pollutants and environmental factorsEcotoxicol. Environ. Safety3723844PubMedGoogle Scholar
  9. Eckwert, H., Alberti, G., Köhler, H.-R. 1997The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure: I. Principles and toxicological assessmentEcotoxicology624962Google Scholar
  10. Eisenbeis, G. (1993). Zersetzung im Boden. In R. Ehrnsberger (ed.). Bodenmesofauna und Naturschutz Bedeutung und Auswirkungen von anthropogenen Maßnahmen. Inf. Natursch. Landschaftspfl. 6, 53–76.Google Scholar
  11. Ellis, R.J., van der Vies, S.M. 1991Molecular chaperonesAnnu. Rev. Biochem.6032147PubMedGoogle Scholar
  12. Filzek, P., Spurgeon, D.J., Broll, G., Svendsen, C., Hankard, P., Kammenga, J.E., Weeks, J.M. 2004Pedological characterisation of sites along a transect from a primary cadmium/lead/zinc smelting worksEcotoxicology13725737PubMedGoogle Scholar
  13. Gething, M.-J., Sambrook, J. 1992Protein folding in the cellNature3553345CrossRefPubMedGoogle Scholar
  14. Gräff, S. (1997). Ultrastrukturelle Plastizität und biochemische Biomarkerreaktionen sapro-/phytophager Bodeninvertebraten: Arbeiten zur Toxizität und Akkumulation umweltrelevanter Schadstoffe. Ph.D. thesis, University of Heidelberg, Heidelberg, F.R.G.Google Scholar
  15. Gupta, R.S. 1995Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cellsMol. Microbiol.15111PubMedGoogle Scholar
  16. Guven, K., Duce, J.A., de Pomerai, D.I. 1994Evaluation of a stress-inducible transgenic nematode strain for rapid aquatic toxicity testingAquat. Toxicol.2911937Google Scholar
  17. Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., Ellis, R.J. 1988Homologous plant and bacterial proteins chaperone oligomeric protein assemblyNature3333304PubMedGoogle Scholar
  18. Hightower, L.E. 1993A brief perspective on the heat-shock response and stress proteinsMarine Environ. Res.357983Google Scholar
  19. Hopkin, S.P. 1989Ecophysiology of Metals in Terrestrial InvertebratesElsevierLondon, UKGoogle Scholar
  20. Hopkin, S.P. 1990Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber J. Appl. Ecol.2746074Google Scholar
  21. Hopkin, S.P., Hames, C.A.C. 1994Zinc among a ‘cocktail’ of metal pollutants, is responsible for the absence of the terrestrial isopod Porcellio scaber from the vicinity of a primary smelting worksEcotoxicology26878Google Scholar
  22. Kammenga, J.E., Arts, M.S.J., Oude-Breuil, W.J.M. 1998HSP60 as a potential biomarker of toxic stress in the nematode Plectus acuminatus Arch. Environ. Contam. Toxicol.3425358PubMedGoogle Scholar
  23. Kammenga, J.E., Van Koert, P.H.G., Riksen, J.A.G., Korthals, G.W., Bakker, J. 1996A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acuminatus Environ. Toxicol. Chem.1572227Google Scholar
  24. Köhler, H.-R., Eckwert, H. 1997The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure. II: Joint toxicity and transfer to field situationsEcotoxicology626374Google Scholar
  25. Köhler, H.-R., Eckwert, H., Triebskorn, R., Bengtsson, G. 1999bInteraction between tolerance and 70 kDa stress protein (hsp70) induction in collembolan populations exposed to long-term metal pollutionAppl. Soil Ecol.114352Google Scholar
  26. Köhler, H.-R., Knödler, C., Zanger, M. 1999aDivergent kinetics of hsp70 induction in Oniscus asellus (Isopoda) in response to four environmentally relevant organic chemicals (B[a]P, PCB52, γ-HCH, PCP): Suitability and limits of a biomarkerArch. Environ. Contam. Toxicol.3617985Google Scholar
  27. Köhler, H.-R., Triebskorn, R., Stöcker, W., Kloetzel, P.-M., Alberti, G. 1992The 70 kD heat shock protein (hsp70) in soil invertebrates: a possible tool for monitoring environmental toxicantsArch. Environ. Contam. Toxicol.2233438PubMedGoogle Scholar
  28. Köhler, H.-R., Zanger, M., Eckwert, H., Einfeldt, I. 2000Selection favours low hsp70 levels in chronically metal-stressed soil arthropodsJ. Evol. Biol.1356982Google Scholar
  29. Laemmli, U.K. 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature22768085PubMedGoogle Scholar
  30. Lindquist, S. 1986The heat-shock responseAnnu. Rev. Biochem.55115191PubMedGoogle Scholar
  31. Lindquist, S., Craig, E.A. 1988The heat-shock proteinsAnnu. Rev. Genet.2263177PubMedGoogle Scholar
  32. Mariño, F., Winters, C., Morgan, A.J. 1999Heat shock protein (hsp60, hsp70, hsp90) expression in earthworms exposed to metal stressors in the field and laboratoryPedobiologia4361524Google Scholar
  33. Nover, L. 1991The Heat Shock ResponseCRC PressBoca Raton509Google Scholar
  34. Parsell, D.A., Lindquist, S. 1993The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteinsAnnu. Rev. Genet.2743796PubMedGoogle Scholar
  35. Posthuma, L., van Straalen, N.M. 1993Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequencesComp. Biochem. Physiol.106C1138Google Scholar
  36. Pyza, E., Mak, P., Kramarz, P., Laskowski, R. 1997Heat shock proteins (HSP70) as biomarkers in exotoxicological studiesEcotoxicol. Environ. Safety3824451PubMedGoogle Scholar
  37. Ritossa, F. 1962A new puffing pattern induced by temperature shock and DNP in Drosophila Experientia18571573Google Scholar
  38. Sanders, B.M. 1990Stress proteins: potential as multitiered biomarkersMcCarthy, J.F.Shugart, L.R. eds. Biomarkers of Environmental ContaminationLewis PublishersChelsea, MI16591Google Scholar
  39. Sanders, B.M. 1993Stress proteins in aquatic organisms: an environmental perspectiveCrit. Rev. Toxicol.234975PubMedGoogle Scholar
  40. Schill, R.O., Köhler, H.-R. 2004Energy reserves and metal-storage granules in the hepatopancreas of Oniscus asellus and Porcellio scaber (Isopoda) from a metal gradient at Avonmouth, UKEcotoxicology13787796PubMedGoogle Scholar
  41. Schouten, A.J. and Van der Brugge, I.R. (1989). Acute toxiciteit van aluminium en H + -ionen concentratie voor bodemnematoden uit een zuur en kalkrijk dennenbos. 1) Ontwikkeling en toepassing van een toets in waterig medium. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, Report nr. 718603001.Google Scholar
  42. Spitz, D.R., Li, G.C. 1990Heat-induced cytotoxicity in hydrogen peroxide-resistant Chinese hamster fibroblastsJ. Cell. Physiol.14225560PubMedGoogle Scholar
  43. Towbin, H., Theophil, S., Gordon, J. 1979Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applicationsProc. Natl. Acad. Sci. USA76435054PubMedGoogle Scholar
  44. Van Bezooijen, J. (1997). Methoden en technieken voor nematologie, 95 pp. Landbouwuniversiteit Wageningen, Vakgroep Nematologie.Google Scholar
  45. Welch, W.J. 1993How cells respond to stressSci. Am.19933441Google Scholar
  46. Wheelock, C.E., Wolfe, M.F., Olsen, H., Tjeerdema, R.S., Sowby, M.L. 1999Hsp60-induced tolerance in the rotifer Brachionus plicatilis exposed to multiple environmental contaminantsArch. Environ. Contam. Toxicol.3628187PubMedGoogle Scholar
  47. Wickner, S., Hoskins, J., McKenny, K. 1991Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepANature35016567CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Marie-José S. J. Arts
    • 1
  • Ralph O. Schill
    • 2
    • 3
  • Thomas Knigge
    • 2
    • 3
  • Helga Eckwert
    • 2
  • Jan E. Kammenga
    • 1
  • Heinz-R. KÖhler
    • 2
    • 3
  1. 1.Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
  2. 2.Cell Biology, Zoological InstituteUniversity of TübingenTübingenGermany
  3. 3.Animal Physiological Ecology, Zoological InstituteUniversity of TübingenTübingenGermany

Personalised recommendations