Potential poleward distribution shift of dolphinfish (Coryphaena hippurus) along the southern California Current System

Abstract

The dolphinfish (Coryphaena hippurus Linnaeus, 1758) is an epipelagic top-predator that is globally distributed in tropical and subtropical waters. In the Eastern Tropical and Subtropical Pacific, this fish represents a target species for commercial and recreational fisheries. Climate change is affecting biodiversity, and a poleward expansion was suggested for dolphinfish due to its affinity for warm waters. Considering that hypothesis, the objective of this research is to model the historical distribution of dolphinfish within the northern limit of its distribution in the Eastern Tropical Pacific and to evaluate the potential distribution shift along the North American temperate coast due to environmental changes under climate change scenarios. According to the Ecological Niche Model, a poleward shift in dolphinfish distribution is expected during this century as a consequence of gradual northern displacement of the sea surface temperature isotherm along the North American coast.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguilar-Palomino B, Galvan-Magaña F, Abitia-Cardenas LA, Muhlia-Melo AF, Rodríguez-Romero J (1998) Feedingaspects of thedolphinCoryphaenahippurusLinnaeus, 1758 in Cabo San Lucas, Baja California Sur, Mexico. Cienc Mar 24(3):253–265. https://doi.org/10.7773/cm.v24i3.758

    Article  Google Scholar 

  2. Alejo-Plata C, Gómez JL, Salgado-Ugarte IH (2011) Age and growth of dolphinfish Coryphaenahippurus, in the Gulf of Tehuantepec, Mexico. Rev Biol Mar Oceanogr 46(2):125–134. https://doi.org/10.4067/S0718-19572011000200003

    Article  Google Scholar 

  3. Alejo-Plata C, Gómez JL, Serrano-Guzmán SJ (2014) Variability in the relative abundance, size structure and sex ratio of the dolphinfish Coryphaenahippurus(Pisces: Coryphaenidae) in the Gulf of Tehuantepec, México. Rev Biol Trop. 62(2):611–626. ISSN-0034-7744. https://doi.org/10.15517/rbt.v62i2.10849

  4. Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecol Biogeogr 27(3):277–284. https://doi.org/10.1111/geb.12693

    Article  Google Scholar 

  5. Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Global Chang Biol 15(7):1790–1803. https://doi.org/10.1111/j.1365-2486.2009.01848.x

    Article  Google Scholar 

  6. Benson SR, Croll DA, Marinovic BB, Chavez FP, Harvey JT (2002) Changes in the cetacean assemblage of a coastal upwelling ecosystem during El Niño 1997–98 and La Niña 1999. Prog Oceanogr 54:279–291. https://doi.org/10.1016/S0079-6611(02)00054-X

    Article  Google Scholar 

  7. Bernardo J, Spotila J(2006) Physiological constraints on organismal response to global warming; mechanistic insights from clinally varying populations and implications for assessing endangerment. Biol Lett 2, 135–139. https://doi.org/10.1098/rsbl.2005.0417

    Article  PubMed  Google Scholar 

  8. Berón-Vera FJ, Ripa P (2002) Seasonal salinity balance in the Gulf of California. J Geophys Res 107:1–15. https://doi.org/10.1029/2000JC000769

    Article  Google Scholar 

  9. Bignami S, Sponaugle S, Cowen RK (2014) Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, Mahi-mahi Coryphaena hippurus. Aquat Biol 21:249–260. https://doi.org/10.3354/ab00598

    Article  Google Scholar 

  10. Bignami S, Sponaugle S, Hauff M, Cowen RK (2017) Combined effects of elevated pCO2, temperature, and starvation stress on larvae of a large tropical marine fish. ICES J Mar Sci 74:1220–1229. https://doi.org/10.1093/icesjms/fsw216

    Article  Google Scholar 

  11. Block BA, Jonsen ID, Jorgensen SJ et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90. https://doi.org/10.1038/nature10082

    CAS  Article  PubMed  Google Scholar 

  12. Booth D, Feary D, Kobayashi D, Luiz O, Nakamura Y(2018) Tropical marine fishes and fisheries and climate change, In: Phillips BF, Pérez-Ramírez M. (Eds) Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis, vol II. Wiley, Hoboken, pp 875–896

  13. Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  14. Boustany AM, Matteson R, Castleton M, Farwell C, Block BA (2010) Movements of pacific bluefin tuna (Thunnusorientalis) in the Eastern North Pacific revealed with archival tags. Progr Oceanogr 86(1):94–104. https://doi.org/10.1016/j.pocean.2010.04.015

    Article  Google Scholar 

  15. Brodie S, Hobday AJ, Smith JA, Everett JD, Taylor MD, Gray CA, Suthers IM (2015) Modelling the oceanic habitats of two pelagic species using recreational fisheries data. Fish Oceanogr 24(5):463–477. https://doi.org/10.1111/fog.12122

    Article  Google Scholar 

  16. Brodie S, Hobday AJ, Smith JA, Spillman CM, Hartog JR, Everett JD, Taylor MD, Gray CA, Suthers IM (2017) Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers. Deep-Sea Res Pt II T 140:222–229. https://doi.org/10.1016/j.dsr2.2017.03.004

    Article  Google Scholar 

  17. California Department of Fish and Game (1993) Review of some California fisheries for 1992. Cal Coop Ocean Fish 34:7–20

    Google Scholar 

  18. Collins M, Knutti R, Arblaster J et al (2013) Long-term Climate Change: Projections, Commitments and Irreversibility, In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis, Fifth Assessment Report of IPCC. Cambridge UniversityPress, Cambridge, pp 1029–1136

  19. Cominassi L, Moyano M, Claireaux G et al (2019) Combined effects of ocean acidification and temperature on larval and juvenile growth, development and swimming performance of European sea bass (Dicentrarchus labrax). PLoS One 14:1–22. https://doi.org/10.1371/journal.pone.0221283

    CAS  Article  Google Scholar 

  20. Diaz-Jaimes P, Uribe-Alcocer M, Rocha-Olivares A, Garcia-de-Leon FJ, Nortmoon P, Durand JD (2010) Global phylogeography of the dolphinfish (Coryphaenahippurus): the influence of large effective population size and recent dispersal on the divergence of a marine pelagic cosmopolitan species. Mol Phylogenet Evol 57:1209–1218. https://doi.org/10.1016/j.ympev.2010.10.005

    CAS  Article  PubMed  Google Scholar 

  21. DOF (Diario Oficial de la Federación) (1995) Norma Oficial Mexicana NOM-017-PESC-1994. Para regular las actividades de Pesca deportiva en las Aguas de Jurisdicción Federal de los Estados Unidos Mexicanos. Tomo No. 15–19. México, D.F

  22. Downie AT, Illing B, Faria AM, Rummer JL (2020) Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Rev Fish Biol Fish 30:93–108. https://doi.org/10.1007/s11160-019-09592-w

    Article  Google Scholar 

  23. Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP Rev Especializada en Cien Químico-Biológicas 16(1):5–17. https://doi.org/10.1016/S1405-888X(13)72073-4

    Article  Google Scholar 

  24. Etnoyer P, Canny D, Mate B, Morgan L (2004) Persistent pelagic habitats in the Baja California to Bering Sea (B2B). Ecoregion Oceanogr 17:90–101. https://doi.org/10.5670/oceanog.2004.71

    Article  Google Scholar 

  25. Etnoyer P, Canny D, Mate B, Morgand L, Ortega-Ortiz J, Nichols W (2006) Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep‐Sea Res Pt II 53:340–358. https://doi.org/10.1016/j.dsr2.2006.01.010

    Article  Google Scholar 

  26. Farrell ER, Boustany AM, Halpin PN, Hammond DL (2014) Dolphinfish (Coryphaenahippurus) distribution in relation to biophysical ocean conditions in the northwest Atlantic. Fish Res 151:177–190. https://doi.org/10.1016/j.fishres.2013.11.014

    Article  Google Scholar 

  27. Fernández-Rivera Melo FJ, Reyes-Bonilla H, Campos-Dávila L (2015) Extension of range of Lutjanusinermis (Peters, 1896) (Perciformes: Lutjanidae) to the central region of the Gulf of California, Mexico. J Appl Icthtyol 31:541–543. https://doi.org/10.1111/jai.12750

    Article  Google Scholar 

  28. Feng X, Park DS, Walker C et al (2019) A checklist for maximizing reproducibility of ecological niche models. Nat Ecol Evol 3:1382–1395. https://doi.org/10.1038/s41559-019-0972-5

    Article  PubMed  Google Scholar 

  29. FMP-HMS (2018) Fishery Management Plan for U.S. West Coast Fisheries for Highly Migratory Species. Pacific Fishery Management Council, National Oceanic and Atmospheric Administration, NA05NMF441008

  30. Freeman LA, Kleypas JA, Miller AJ (2013) Coral reef habitat response to climate change scenarios. PloS One 8(12):e82404. https://doi.org/10.1371/journal.pone.0082404

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. González-Cuéllar OT, Reyes‐Bonilla H, Fourriere M, Rojo M (2013) Range extensions of four species of parrotfishes (Scaridae) in the northern Gulf of California. Mexico Cybium 37:223–226. https://doi.org/10.26028/cybium/2013-373-011

    Article  Google Scholar 

  32. GBIF.org (2018) GBIF Occurrence Download https://doi.org/10.15468/dl.asnrfv

  33. Hazen EL, Jorgensen S, Rykaczewski RR et al (2013) Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Chang 3:234–238. https://doi.org/10.1038/nclimate1686

    Article  Google Scholar 

  34. Hewitt R (1981) Eddies and speciation in the California Current. Cal Coop Ocean Fish 22:96–98

    Google Scholar 

  35. Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B 367(1596):1665–1679. https://doi.org/10.1098/rstb.2012.0005

    Article  Google Scholar 

  36. IPCC (2013) Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp

  37. Jarnevich CS, Stohlgren TJ, Kumar S et al (2015) Caveats for correlative species distribution modeling. Ecol Inform 29:6–15. https://doi.org/10.1016/j.ecoinf.2015.06.007

    Article  Google Scholar 

  38. Kitchens LL, Rooker JR (2014) Habitat associations of dolphinfish larvae in the Gulf of Mexico. Fish Oceanogr 23(6):460–471. https://doi.org/10.1111/fog.12081

    Article  Google Scholar 

  39. Kurczyn JA, Beier E, Lavín MF, Chaigneau A (2012) Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: Statistical characterization from satellite altimetry. J Geophys Res 117:C10021. https://doi.org/10.1029/2012JC007970

    Article  Google Scholar 

  40. Lluch-Belda D, Elorduy-Garay J, Lluch-Cota SE, Ponce-Díaz G (2000) Centros de Actividad Biológica del Pacífico Mexicano. CIBNOR, México

    Google Scholar 

  41. Lluch-Belda D, Lluch-Cota DB, Lluch-Cota SE (2003) Baja California’s biological transition zones: Refuges for the California Sardine. J Oceanogr 59:503–513. https://doi.org/10.1023/A:1025596717470

    Article  Google Scholar 

  42. Lluch-Belda D, Lluch-Cota DB, Lluch-Cota SE (2003b) Scales of interannual variability in the California Current System: associated physical mechanisms and likely ecological impacts. Cal Coop Ocean Fish 44:76–85

    Google Scholar 

  43. Lluch-Belda D, Lluch-Cota DB, Lluch-Cota SE (2005) Changes in marine faunal distributions and ENSO events in the California Current. Fish Oceanogr 14:458–467. https://doi.org/10.1111/j.1365-2419.2005.00347.x

    Article  Google Scholar 

  44. Lluch-Belda D, Del Monte Luna P, Lluch-Cota SE (2009) 20th century variability of the Gulf of California SST.Cal. Coop Ocean Fish 50:147–154

    Google Scholar 

  45. Lluch-Cota DB, Wooster WS, Hare SR (2001) Sea surface temperature variability in coastal areas of the Northeastern Pacific related to the El Niño-Southern Oscillation and Pacific Decadal Oscillation. Geophys Res Lett 28:2029–2032. https://doi.org/10.1029/2000GL012429

    Article  Google Scholar 

  46. Lluch-Cota SE, Aragón-Noriega EA, Arreguín-Sánchez F et al (2007) The Gulf of California: review of ecosystem status and sustainability challenges. Prog Oceanogr 73:1–26. https://doi.org/10.1016/j.pocean.2007.01.013

    Article  Google Scholar 

  47. Lluch-Cota SE, Parés-Sierra A, Magaña-Rueda VO, Arreguín-Sánchez F, Bazzino G, Herrera-Cervantes H, Lluch-Belda D (2010) Changing climate in the Gulf of California. Prog Oceanogr 87:114–126. https://doi.org/10.1016/j.pocean.2010.09.007

    Article  Google Scholar 

  48. Lluch-Cota S, Salvadeo C, Lluch-Cota D, Saldívar-Lucio R, Ponce-Díaz G (2017) Impacts of climate change on Mexican Pacific Fisheries. In: Phillips B, Pérez-Ramírez M (eds) The impacts of climate change on fisheries and aquaculture. Wiley, Hoboken, pp 219–238

    Google Scholar 

  49. Madrid JV, Beltrán-Pimienta R (2001) Longitud, peso y sexo del dorado Coryphaenahippurus(Perciformes: Coryphaenidae), del litoral de Sinaloa, Nayarit y Baja California Sur, México. Rev Biol Trop 49 n:3–4

  50. Marín-Enríquez E, Seoane J, Muhlia-Melo A (2017) Environmental modeling of occurrence of dolphinfish (Coryphaena spp.) in the Pacific Ocean off Mexico reveals seasonality in abundance, hot spots and migration patterns. Fish Oceanogr 27:28–40. https://doi.org/10.1111/fog.12231

    Article  Google Scholar 

  51. Marín-Enríquez E, Muhlia-Melo A (2018) Environmental and spatial preferences of dolphinfish (Coryphaena spp.) in the eastern Pacific Ocean off the coast of Mexico. Fish B-NOAA 116(1):9–20. https://doi.org/10.7755/FB.116.1.2

    Article  Google Scholar 

  52. Martínez-Rincón RO, Ortega-García S, Vaca-Rodríguez JG (2009) Incidental catch of dolphinfish (Coryphaena spp.) reported by the Mexican tuna purse seiners in the eastern Pacific Ocean. Fish Res 96:296–302. https://doi.org/10.1016/j.fishres.2008.12.008

    Article  Google Scholar 

  53. McLain DR, Brainard RE, Norton JG (1985) Anomalous warm events in eastern boundary current systems. Cal Coop Ocean Fish 26:51–64

    Google Scholar 

  54. Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020) Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol Modell 415:108837. https://doi.org/10.1016/j.ecolmodel.2019.108837

    Article  Google Scholar 

  55. Morzaria-Luna H, Turk-Boyer P, Moreno-Baez M (2014) Social indicators of vulnerability for fishing communities in the Northern Gulf of California, Mexico: Implications for climate change. Mar Policy 45:182–193. https://doi.org/10.1016/j.marpol.2013.10.013

    Article  Google Scholar 

  56. Navarro-Olache LF, Lavín MF, Alvarez-Sánchez LG, Zirino A (2004) Internal structure of SST features in the central Gulf of California. Deep-Sea Res Pt II 51:673–687. https://doi.org/10.1016/j.dsr2.2004.05.014

    Article  Google Scholar 

  57. Norton JG (1999) Apparent habitat extensions of dolphinfish (Coryphaenahippurus) in response to climate transients in the California Current. Sci Mar 63:239–260. https://doi.org/10.3989/scimar.1999.63n3-4261

    Article  Google Scholar 

  58. Olson RJ, Galvan-Magana F (2002) Food habits and consumption rates of common dolphinfish (Coryphaenahippurus) in the eastern Pacific Ocean. Fish B-NOOA 100(2):279–298

    Google Scholar 

  59. Ortega-Andrade HM, Prieto-Torres DA, Gómez-Lora I, Lizcano DJ (2015) Ecological and geographical analysis of the distribution of the mountain tapir (Tapiruspinchaque) in Ecuador: importance of protected areas in future scenarios of global warming. PloS One 10(3):e0121137. https://doi.org/10.1371/journal.pone.0121137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Osorio-Olvera L, Barve V, Barve N, Soberón J, Falconi M (2018) ntbox: From getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.2.5.4. https://github.com/luismurao/ntbox

  61. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Péron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc R Soc Lond (Biol) 279(1738):2515–2523. https://doi.org/10.1098/rspb.2011.2705

    Article  Google Scholar 

  63. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213(1):63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  64. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  65. Pimentel M, Pegado M, Repolho T, Rosa R (2014) Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Mar Biol 161:725–729. https://doi.org/10.1007/s00227-013-2365-7

    CAS  Article  Google Scholar 

  66. Poloczanska ES, Brown CJ, Sydeman WJ et al (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925. https://doi.org/10.1038/nclimate1958

    Article  Google Scholar 

  67. Prieto-Torres DA, Pinilla-Buitrago G (2017) Estimating the potential distribution and conservation priorities of Chironectesminimus (Zimmermann, 1780) (Didelphimorphia: Didelphidae). Therya 8(2):131–144. https://doi.org/10.12933/therya-17-478

  68. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    CAS  Article  Google Scholar 

  69. Salvadeo C, Lluch-Belda D, Gómez-Gallardo A, Urbán-Ramírez J, MacLeod C (2010) Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific. Endanger Species Res 11:13–19. https://doi.org/10.3354/esr00252

    Article  Google Scholar 

  70. Salvadeo C, Flores-Ramírez S, Gómez-Gallardo A, MacLeod C, Lluch-Belda D, Jaume-Schinkel S, Urbán-Ramírez J (2011) Bryde’s whale (Balaenopteraedeni) in the southern Gulf of California: relationship with climate and prey availability. Cienc Mar 37(2):215–225. https://doi.org/10.7773/cm.v37i2.1840

    Article  Google Scholar 

  71. Salvadeo C, Saldívar-Lucio R, Villalobos H, Lluch-Belda D (2013) Variabilidad de media y baja frecuencia en el Pacífico mexicano, sus efectos ecológicos y su importancia en los pronósticos climáticos de largo plazo. Documento académico del Segundo Congreso Nacional de Investigación en Cambio Climático. Universidad Nacional Autónoma de México. http://www.pincc.unam.mx/DOCUMENTOS/memoriaPincc2012.pdf

  72. Salvadeo C, Gómez-Gallardo A, Nájera-Caballero M, Urbán-Ramírez J, Lluch-Belda D (2015) The effect of climate variability on gray whales (Eschrichtiusrobustus) within their wintering areas. Plos One 10(8):e0134655. https://doi.org/10.1371/journal.pone.0134655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Santamaría-del-Angel E, Alvarez-Borrego S, Muller-Karger FE (1994) Gulf of California biogeographic regions based on coastal zone color scanner imagery. J Geophys Res 99:7411–7421

    Article  Google Scholar 

  74. Schaefer KM, Fuller DW, Block BA (2011) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnusalbacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering. Fish Res 112:22–37. https://doi.org/10.1016/j.fishres.2011.08.006

    Article  Google Scholar 

  75. Schneider N, Di Lorenzo E, Niiler PP (2005) Salinity variations in the Southern California Current. J Phys Oceanogr 35(8):1421–1436. https://doi.org/10.1175/JPO2759.1

    Article  Google Scholar 

  76. Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Sci U S A 106(Supplement 2):19644–19650. https://doi.org/10.1073/pnas.0901637106

    Article  Google Scholar 

  77. Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57(7):573–583. https://doi.org/10.1641/B570707

    Article  Google Scholar 

  78. Stull JK, Dryden KA, Gregory PA (1987) A historical review of fisheries statistics and environmental and societal influencesoff the Palos Verdes Peninsula. California. Cal. Coop Ocean Fish 28:135–154

    Google Scholar 

  79. Teffer AK, Staudinger MD, Juanes F (2015) Trophic niche overlap among dolphinfish and co-occurring tunas near the northern edge of their range in the western North Atlantic. Mar Biol 162(9):1823–1840. https://doi.org/10.1007/s00227-015-2715-8

    Article  Google Scholar 

  80. Tripp-Valdez A, Galván-Magaña F, Ortega-García S(2010)Feeding habits of dolphinfish (Coryphaenahippurus) in the southeastern Gulf of California, Mexico. J. Appl. Ichthyol. 26, 578–582. https://doi.org/10.1111/j.1439-0426.2010.01483.x

  81. Tripp-Valdez A, Galván-Magaña F, Ortega-García S (2015) Food sources of common dolphinfish (Coryphaenahippurus) based on stomach content and stable isotopes analyses. J Mar Biol Assoc UK 95(3):579–591. https://doi.org/10.1017/S0025315414001842

    CAS  Article  Google Scholar 

  82. Turrent C, Zaitsev O (2014) Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico. Bound Layer Meteorol 151(2):353–371. https://doi.org/10.1007/s10546-014-9908-4

    Article  Google Scholar 

  83. Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: A review. Prog Oceanogr 69:239–266. https://doi.org/10.1016/j.pocean.2006.03.004

    Article  Google Scholar 

  84. Warren DL (2012) In defense of “niche modeling”. Trends Ecol Evol 27:497–500. https://doi.org/10.1016/j.tree.2012.03.010

    Article  PubMed  Google Scholar 

  85. Yen PP, Sydeman WJ, Bograd SJ, Hyrenbach KD (2006) Spring-time distributions of migratory marine birds in the southern California Current: Oceanic eddy associations and coastal habitat hotspots over 17 years. Deep-Sea Res Pt II 53:399–418. https://doi.org/10.1016/j.dsr2.2006.01.013

    Article  Google Scholar 

  86. Zúñiga-Flores MS, Ortega-García S, Klett-Trauslen A (2008) Interannual and seasonal variation of dolphinfish (Coryphaenahippurus) catch rates in the southern Gulf of California, Mexico. Fish Res 94:13–17. https://doi.org/10.1016/j.fishres.2008.06.003

    Article  Google Scholar 

  87. Zúñiga-Flores MS, Ortega-García S, Rodríguez-Jaramillo MDC, López-Martínez J (2011) Reproductive dynamics of the common dolphinfish Coryphaena hippurus in the southern Gulf of California. Mar Biol Res 7:677–689. https://doi.org/10.1080/17451000.2011.554558

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council of Science and Technology of Mexico (CONACYT) for support of the Professorship Program “Catedras” and the doctoral scholarship of DP and DA and the Program “Resilience” of the United Nations Environmental Program (PNUD) for financial support to the Project 00087099 “Program on Adaptation to the Climate Change of El Vizcaino Biosphere Reserve”. We appreciate the valuable comments of David Prieto-Torres to improve the methodology. DA extends his gratitude to David A. Prieto-Torres and Jorge Ramirez.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Auliz-Ortiz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 384 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salvadeo, C., Auliz-Ortiz, D.M., Petatán-Ramírez, D. et al. Potential poleward distribution shift of dolphinfish (Coryphaena hippurus) along the southern California Current System. Environ Biol Fish (2020). https://doi.org/10.1007/s10641-020-00999-0

Download citation

Keywords

  • Climate change
  • Sportfishing
  • Dorado
  • Ocean warming
  • Highly migratory species