Environmental Biology of Fishes

, Volume 101, Issue 5, pp 829–841 | Cite as

Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei: Cyprinidae) with approximate Bayesian computation

  • Jin-Quan Yang
  • Kui-Ching Hsu
  • Po-Hsun Kuo
  • Lin-Lin Li
  • Wen-Qiao Tang
  • Dong Liu
  • Hung-Du Lin
Article

Abstract

The rosy bitterling, Rhodeus ocellatus, is a small freshwater fish belonging to the family Cyprinidae. This species lives in ponds where freshwater mussels are abundant and female lays eggs inside mussels. To understand whether the reproduction mode influenced the phylogeography, our study examined the genetic structure of R. ocellatus using sequences from the mitochondrial DNA (cytochrome b gene and control region) and nuclear DNA (the first intron of ribosomal protein S7 gene). In total, 213 specimens were collected from twelve populations in south of Yangtze River, including Yangtze River, Taiwan and Hainan Islands. The phylogenetic analyses based on mitochondrial and nuclear sequences both showed the lack of a population genetic structure, but all results, including the approximate Bayesian computation approaches, showed that these two markers revealed incongruent historical signals. Our study found that (1) the discordance between these two markers were accounted for admixtures by introduced; (2) the phylogeographic pattern of R. ocellatus and that of other freshwater fish were identical; (3) the reproduction mode was due to that the gene flows among populations were limited; and (4) R. ocellatus colonized in south of the Yangtze River (including) after southeast coastal districts formed and before Taiwan Island reached its present shape by comparing our results with that of the previous studies.

Keywords

Approximate Bayesian computation Introduced Mitochondria Nuclear Rhodeus ocellatus 

Notes

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 31172066), and Shanghai Universities First-class Disciplines Project of Fisheries. This research supported by the Research Fund Program of Guangxi Key Lab of Mangrove Conservation and Utilization (Grant No. GKLMC-201307 and GKLMC-201404). We also thank the anonymous referees for their helpful comments.

Compliance with ethical standards

Ethics statement

The animal experiments were performed under an animal ethics approval granted by the Shanghai Ocean University. Our sampling procedures did not affect the survival of studies species.

References

  1. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13(4):729–744.  https://doi.org/10.1046/j.1365-294X.2003.02063.x CrossRefPubMedGoogle Scholar
  2. Ballard JW, Chernoff B, James AC (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56(3):527–545.  https://doi.org/10.1111/j.0014-3820.2002.tb01364.x CrossRefPubMedGoogle Scholar
  3. Berrebi P, Retif A, Fang F, Zhang CG (2006) Population structure and systematics of Opsariichthys bidens (Osteichthyes: Cyprinidae) in south-east China using a new nuclear marker: the introns (EPIC-PCR). Biol J Linn Soc 87(1):155–166.  https://doi.org/10.1111/j.1095-8312.2006.00563.x CrossRefGoogle Scholar
  4. Brito PH (2007) Contrasting patterns of mitochondrial and microsatellite genetic structure among western European populations of tawny owls (Strix aluco). Mol Ecol 16(16):3423–3437.  https://doi.org/10.1111/j.1365-294X.2007.03401.x CrossRefPubMedGoogle Scholar
  5. Chen XL, Chiang TY, Lin HD, Zheng HS, Shao KT, Zhang Q, Hsu KC (2007) Mitochondrial DNA phylogeographyof Glyptothorax fokiensis and Glyptothorax hainanensis in Asia. J Fish Biol 70(sa):75–93.  https://doi.org/10.1111/j.1095-8649.2007.01370.x CrossRefGoogle Scholar
  6. Chiang TY, Lin HD, Shao KT, Hsu KC (2010) Multiple factors have shaped the phylogeography of Chinese spiny loach (Cobitis sinensis) in Taiwan as inferred from mitochondrial DNA variation. J Fish Biol 76(5):1173–1189.  https://doi.org/10.1111/j.1095-8649.2010.02589.x CrossRefPubMedGoogle Scholar
  7. Chiang TY, Lin HD, Zhao J, Kuo PH, Lee TW, Hsu KC (2013) Diverse processes shape deep phylogeographical divergence in Cobitis sinensis (Teleostei: Cobitidae) in East Asia. J Zool Syst Evol Res 51:316–326Google Scholar
  8. Chiang TY, Chen YY, Lee TW, Hsu KC, Lin FJ, Wang WK, Lin HD (2017) Comparative phylogeography of two codistributed endemic cyprinids in southeastern Taiwan. Biochem Syst Ecol 70:283–290.  https://doi.org/10.1016/j.bse.2016.12.010 CrossRefGoogle Scholar
  9. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7(9):1255–1256PubMedGoogle Scholar
  10. Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W, Wang E, Chen L (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large scale drainage patterns. Tectonics 23:TC106CrossRefGoogle Scholar
  11. Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Estoup A (2014) DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189CrossRefPubMedGoogle Scholar
  12. Crochet PA (2000) Genetic structure of avian populations—allozymes revisited. Mol Ecol 9(10):1463–1469.  https://doi.org/10.1046/j.1365-294x.2000.01026.x CrossRefPubMedGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Drummond AJ, Rambau A, Suchard M (2013) BEAST:1.8.0 http://beast.bio.ed.ac.uk
  15. Dupanloup I, Schneidera S, Excoffier NL (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  16. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10(3):564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  17. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the younger Dryas event and deep-ocean circulation. Nature 342(6250):637–642.  https://doi.org/10.1038/342637a0 CrossRefGoogle Scholar
  18. Froese R, Pauly D (2017) FishBase. World Wide Web electronic publication http://www.fishbase.org
  19. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New Algorithma and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  20. Guo X, Chen D (2010) Comparative evolution of the mitochondrial cytochrome b gene and nuclear S7 ribosomal protein gene intron 1 in sinipercid fishes and their relatives. Hydrobiologia 649(1):139–156.  https://doi.org/10.1007/s10750-010-0236-5 CrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 41:95–98Google Scholar
  22. He SP, Mayden RL, Wang XZ, Wang W, Tang KL, Chen WJ, Chen YY (2008) Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogenet Evol 46:818–829Google Scholar
  23. Hsu KC, Bor H, Lin HD, Kuo PH, Tan MS, Chiu YW (2014) Mitochondrial DNA phylogeography of Semisulcospira libertina (Gastropoda: Cerithioidea: Pleuroceridae): implications the history of landform changes in Taiwan. Mol Biol Rep 41(6):3733–3743.  https://doi.org/10.1007/s11033-014-3238-y CrossRefPubMedGoogle Scholar
  24. Huang J (1945) Major division of tectonic units in China. Earthquake Press, Beijing, China (in Chinese)Google Scholar
  25. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  26. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Monro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132.  https://doi.org/10.1016/B978-1-4832-3211-9.50009-7 CrossRefGoogle Scholar
  27. Kawamura K, Nagata Y, Ohtaka H, Kanoh Y, Kitamura J (2001) Genetic diversity in the Japanese rosy bitterling, Rhodeus ocellatus kurumeus (Cyprinidae). Ichthyol Res 48:369–378CrossRefGoogle Scholar
  28. Kottelat M (2001) Fishes of Laos. WHT publications ltd., Colombo 5, Sri Lanka, pp 198Google Scholar
  29. Lang NJ, Mayden RL (2007) Systematics of the subgenus Oligocephalus (Teleostei: Percidae: Etheostoma) with complete subgeneric sampling of the genus Etheostoma. Mol Phylogenet Evol 43:605–615Google Scholar
  30. Li S (1981) Studies on zoogeographical divisions for fresh water fishes of China. Science PressGoogle Scholar
  31. Lin HD, Kuo PH, Wang WK, Chiu YW, Ju YM, Lin FJ, Hsu KC (2016) Speciation and differentiation of the genus Opsariichthys (Teleostei: Cyprinidae) in East Asia. Biochem Syst Ecol 68:92–100.  https://doi.org/10.1016/j.bse.2016.07.001 CrossRefGoogle Scholar
  32. Liu HZ (1998) A preliminary analysis to biogeographical process of the eastern Asian freshwater fishes. Acta Zootaxon Sin 23:49–55Google Scholar
  33. Liu D, Guo HY, Tang WQ, Yang JQ (2012) Comparative evolution of S7 intron 1 and ribosomal internal transcribed spacer in Coilia nasus (Clupeiformes: Engraulidae). Int J Mol Sci 13(12):3085–3100.  https://doi.org/10.3390/ijms13033085 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Musilová Z, Rícan O, Janko K, Novák J (2008) Molecular phylogeny and biogeography of the neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Mol Phylogenet Evol 46:659–672Google Scholar
  35. Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105(1):207–217PubMedPubMedCentralGoogle Scholar
  36. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 144(3):1237–1245PubMedPubMedCentralGoogle Scholar
  37. Qu Y, Zhang R, Quan Q, Song G, Li SH, Lei F (2012) Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the vinous-throated parrotbill (Paradoxornis webbianus). Mol Ecol 21(24):6117–6133.  https://doi.org/10.1111/mec.12080 CrossRefPubMedGoogle Scholar
  38. Rambaut A (2014) FigTree:1.3 Available at: http://tree.bio.ed.ac.uk/software/figtree/
  39. Rambaut A, Suchard MA, Xie D, Dremmond AJ (2014) Trace:v1.6 Available from http://tree.bio.ed.ac.uk/software/tracer/
  40. Ren ME, Han TC (1959) The Jinsha River valley landforms and river-capture in northwestern Yunnan. Acta Geograph Sin 25:135–155Google Scholar
  41. Rozas J, JC S-DB, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497.  https://doi.org/10.1093/bioinformatics/btg359 CrossRefPubMedGoogle Scholar
  42. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526.  https://doi.org/10.1093/oxfordjournals.molbev.a040023 PubMedGoogle Scholar
  43. Templeton AR (1993) The “eve” hypotheses: a genetic critique and reanalysis. Am Anthropol 95(1):51–72.  https://doi.org/10.1525/aa.1993.95.1.02a00030 CrossRefGoogle Scholar
  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882.  https://doi.org/10.1093/nar/25.24.4876 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang CF, Hsieh CH, Lee SC, Wang HY (2011) Systematics and phylogeography of the Taiwanese endemic minnow Candidia barbatus (Pisces: Cyprinidae) based on DNA sequence, allozymic, and morphological analyses. Zool J Linnean Soc 161(3):613–632.  https://doi.org/10.1111/j.1096-3642.2010.00646.x CrossRefGoogle Scholar
  46. Welcomme RL (1988) International introductions of inland aquatic species. FAO Fish Tech Pap 294:318Google Scholar
  47. Xiao W, Zhang Y, Liu H (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol 18:163–173CrossRefPubMedGoogle Scholar
  48. Yang S, Dong H, Lei F (2009) Phylogeography of regional fauna on the Tibetan plateau: a review. Prog Nat Sci 19:789–799CrossRefGoogle Scholar
  49. Yang JQ, Tang WQ, Liao TY, Sun Y, Zhou ZC, Han CC, Liu D, Lin HD (2012) Phylogeographical analysis on Squalidus argentatus recapitulates historical landscapes and drainage evolution on the island of Taiwan and mainland China. Int J Mol Sci 13(12):1405–1425.  https://doi.org/10.3390/ijms13021405 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang JQ, Hsu KC, Liu ZZ, Su LW, Kuo PH, Tang WQ, Lin HD (2016) The population history of Garra orientalis (Teleostei: Cyprinidae) using mitochondrial DNA and microsatellite data with approximate Bayesian computation. BMC Evol Biol 16(1):73.  https://doi.org/10.1186/s12862-016-0645-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yap SY (2002) On the distributional patterns of southeast-east Asian freshwater fish and their history. J Biogeogr 29(9):1187–1199.  https://doi.org/10.1046/j.1365-2699.2002.00771.x CrossRefGoogle Scholar
  52. Yu Y, Harris AJ, He X (2010) S-DIVA (statistical dispersal-Vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850Google Scholar
  53. Zarza E, Reynoso VH, Emerson BC (2011) Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. J Biogeogr 38(7):1394–1405.  https://doi.org/10.1111/j.1365-2699.2011.02485.x CrossRefGoogle Scholar
  54. Zhang E (1999) Studies of morphometrics, systematic and biogeography of the cyprinid genus Sinilabeo, Rendahl 1932. PhD Thesis, Institute of Hydrobiology. Chinese Academy of SciencesGoogle Scholar
  55. Zhang HN, Chen CG, Huang KR, Li ZQ, Zhang FL, Chen GZ (1990) The new geological structures, tectonic movements and geological environment in coastal line of South China. Earthquake Press, Beijing (in Chinese)Google Scholar
  56. Zhang L, Tang QY, Liu HZ (2008) Phylogeny and speciated of eastern Asian cyprinid genus Sarcocheilichthys. J Fish Biol 72(5):1122–1137.  https://doi.org/10.1111/j.1095-8649.2007.01733.x CrossRefGoogle Scholar
  57. Zheng HS (2004) Freshwater fish fauna and biogeography of eight rivers in East Guangdong, China. MSc dissertation, Institute of Zoology, South China Normal University, Guangzhou, ChinaGoogle Scholar
  58. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17(9):2107–2121.  https://doi.org/10.1111/j.1365-294X.2008.03737.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Demonstration Center for Experimental Fisheries Science EducationShanghai Ocean UniversityShanghaiChina
  2. 2.Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesShanghai Ocean UniversityShanghaiChina
  3. 3.Shanghai Universities Key Laboratory of Marine Animal Taxonomy and EvolutionShanghaiChina
  4. 4.College of FisheriesGuangdong Ocean UniversityZhanjiangChina
  5. 5.Department of Industrial ManagementNational Taiwan University of Science and TechnologyTaipeiTaiwan
  6. 6.The Affiliated School of National Tainan First Senior High SchoolTainanTaiwan

Personalised recommendations