Environmental Biology of Fishes

, Volume 101, Issue 5, pp 711–721 | Cite as

Unmapped sequencing reads identify additional candidate genes linked to magnetoreception in rainbow trout

  • Monica B. Arniella
  • Robert R. Fitak
  • Sönke Johnsen
Article

Abstract

A recent study identified candidate genes linked to magnetoreception in rainbow trout (Oncorhynchus mykiss) by sequencing transcriptomes from the brains of fish exposed to a magnetic pulse. However, the discovery of these candidate genes was limited to sequences that aligned to the reference genome. The unaligned, or unmapped, sequences may yet contain valuable information resulting from regions missing, misassembled, or divergent from the reference. Using the available sequencing data from the trout brain transcriptomes, we assembled >27 million unmapped sequences (5.8% of total sequences) into 45,142 contigs and identified 12 differentially expressed contigs as a result of exposure to a pulsed magnetic field. These contigs encoded a putative superoxide dismutase – a protein necessary to prevent oxidative damage – and collagen alpha-1 type II – a structural protein important for the development and integrity of the retina. These genes were consistent with the previous study suggesting an effect of the magnetic pulse on oxidative consequences of free iron and on non-visual encephalic photoreceptors. Our results demonstrate the utility of assembling unmapped sequencing reads in studies of gene expression and identify additional candidate genes associated with a magnetic sense in trout.

Keywords

Gene expression Transcriptomics RNA-seq Oncorhynchus mykiss 

Notes

Acknowledgements

We would like to thank the Duke Shared Cluster Resource for providing the computational resources necessary for the project. We also thank E. Caves, L. Schweikert, and J. Notar for comments on earlier drafts of this manuscript. This work was supported by the Duke University Scholars Program [to M.B.A.] and the Air Force Office of Scientific Research [FA9550-14-1-0208 to S.J. and R.R.F].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/s0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8(9):1765–1786.  https://doi.org/10.1038/nprot.2013.099 CrossRefPubMedGoogle Scholar
  3. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 12 Aug 2017
  4. Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86(6):708–717.  https://doi.org/10.1016/j.ygeno.2005.08.002 CrossRefPubMedGoogle Scholar
  5. Arniella MB, Fitak R, Johnsen S (2017) Data from: unmapped sequencing reads identify additional candidate genes linked to magnetoreception in trout. Dryad Data Repository.  https://doi.org/10.5061/dryad.4g048
  6. Audicana MT, Kennedy MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21(2):360–379.  https://doi.org/10.1128/cmr.00012-07 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D, Touitou I (2016) Mutation update for COL2A1 gene variants associated with type II collagenopathies. Hum Mutat 37(1):7–15.  https://doi.org/10.1002/humu.22915 CrossRefPubMedGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300Google Scholar
  9. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genêt C, Wincker P, Jaillon O, Crollius HR, Guiguen Y (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657.  https://doi.org/10.1038/ncomms4657 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Blumstein DT, Berger-Tal O (2015) Understanding sensory mechanisms to develop effective conservation and management tools. Curr Opin Behav Sci 6:13–18.  https://doi.org/10.1016/j.cobeha.2015.06.008 CrossRefGoogle Scholar
  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Carrara M, Cavallo F, Arigoni M, Calogero RA (2012) Digging in the RNA-seq garbage: evaluating the characteristics of unmapped RNA-seq reads in normal tissues. In: Sixth international conference on complex, intelligent, and software intensive systems pp 588–591.  https://doi.org/10.1109/CISIS.2012.107
  13. Chew GL, Brown GE (1989) Orientation of rainbow trout (Salmo gairdneri) in normal and null magnetic fields. Can J Zool 67(3):641–643.  https://doi.org/10.1139/z89-092 CrossRefGoogle Scholar
  14. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  15. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17(1):13.  https://doi.org/10.1186/s13059-016-0881-8 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1(1):cot001.  https://doi.org/10.1093/conphys/cot001 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Cooke SJ, Blumstein DT, Buchholz R, Caro T, Fernández-Juricic E, Franklin CE, Metcalfe J, O’Connor CM, St. Clair CC, Sutherland WJ, Wikelski M (2014) Physiology, behavior, and conservation. Physiol Biochem Zool 87(1):1–14.  https://doi.org/10.1086/671165 CrossRefPubMedGoogle Scholar
  18. Deardorff TL, Kent ML (1989) Prevalence of larval Anisakis simplex in pen-reared and wild-caught salmon (Salmonidae) from Puget sound, Washington. J Wildl Dis 25(3):416–419.  https://doi.org/10.7589/0090-3558-25.3.416 CrossRefPubMedGoogle Scholar
  19. Deardorff TL, Kayes SG, Fukumura T (1991) Human anisakiasis transmitted by marine food products. Hawaii Med J 50(1):9–16PubMedGoogle Scholar
  20. Denisenko-Nehrbass N, Faivre-Sarrailh C, Goutebroze L, Girault JA (2002) A molecular view on paranodal junctions of myelinated fibers. J Physiol Paris 96(1-2):99–103.  https://doi.org/10.1016/S0928-4257(01)00085-7 CrossRefPubMedGoogle Scholar
  21. Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406(6793):299–302.  https://doi.org/10.1038/35018561 CrossRefPubMedGoogle Scholar
  22. Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.11–11.14.19.  https://doi.org/10.1002/0471250953.bi1114s51 Google Scholar
  23. Edelman NB, Fritz T, Nimpf S, Pichler P, Lauwers M, Hickman RW, Papadaki-Anastasopoulou A, Ushakova L, Heuser T, Resch GP, Saunders M, Shaw JA, Keays DA (2015) No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc Natl Acad Sci U S A 112(1):262–267.  https://doi.org/10.1073/pnas.1407915112 CrossRefPubMedGoogle Scholar
  24. Eder SHK, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, Winklhofer M (2012) Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Natl Acad Sci U S A 109(30):12022–12027.  https://doi.org/10.1073/pnas.1205653109 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Faber-Hammond JJ, Brown KH (2016) Pseudo-de novo assembly and analysis of unmapped genome sequence reads in wild zebrafish reveal novel gene content. Zebrafish 13(2):95–102.  https://doi.org/10.1089/zeb.2015.1154 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fitak RR, Wheeler BR, Ernst DA, Lohmann KJ, Johnsen S (2017) Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biol Lett 13(4):20170142.  https://doi.org/10.1098/rsbl.2017.0142 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Gadadhar S, Bodakuntla S, Natarajan K, Janke C (2017) The tubulin code at a glance. J Cell Sci 130(8):1347–1353.  https://doi.org/10.1242/jcs.199471 CrossRefPubMedGoogle Scholar
  28. Gouin A, Legeai F, Nouhaud P, Whibley A, Simon JC, Lemaitre C (2015) Whole-genome re-sequencing of non-model organisms: lessons from unmapped reads. Heredity 114(5):494–501.  https://doi.org/10.1038/hdy.2014.85 CrossRefPubMedGoogle Scholar
  29. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652.  https://doi.org/10.1038/nbt.1883 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Grotwinkel JT, Wild K, Segnitz B, Sinning I (2014) SRP RNA remodeling by SRP68 explains its role in protein translocation. Science 344(6179):101–104.  https://doi.org/10.1126/science.1249094 CrossRefPubMedGoogle Scholar
  31. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512.  https://doi.org/10.1038/nprot.2013.084 CrossRefPubMedGoogle Scholar
  32. Hellinger J, Hoffmann KP (2009) Magnetic field perception in the rainbow trout, Oncorhynchus mykiss. J Comp Physiol A 195(9):873–879.  https://doi.org/10.1007/s00359-009-0466-z CrossRefGoogle Scholar
  33. Hellinger J, Hoffmann KP (2012) Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A 198(8):593–605.  https://doi.org/10.1007/s00359-012-0732-3 CrossRefGoogle Scholar
  34. Hsu CY, Ko FY, Li CW, Fann K, Lue JT (2007) Magnetoreception system in honeybees (Apis mellifera). PLoS One 2(4):e395.  https://doi.org/10.1371/journal.pone.0000395 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6(9):703–712.  https://doi.org/10.1038/nrn1745 CrossRefPubMedGoogle Scholar
  36. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240.  https://doi.org/10.1093/bioinformatics/btu031 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Knight M, Ongele E, Lewis FA (2000) Molecular studies of Biomphalaria glabrata, an intermediate host of Schistosoma mansoni. Int J Parasitol 30(4):535–541.  https://doi.org/10.1016/S0020-7519(99)00182-4 CrossRefPubMedGoogle Scholar
  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323.  https://doi.org/10.1186/1471-2105-12-323 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Liu YW, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30(3):301–304.  https://doi.org/10.1093/bioinformatics/btt688 CrossRefPubMedGoogle Scholar
  42. Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y (2007) Barrier-to-autointegration factor--a BAFfling little protein. Trends Cell Biol 17(4):202–208.  https://doi.org/10.1016/j.tcb.2007.02.004 CrossRefPubMedGoogle Scholar
  43. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7.  https://doi.org/10.1038/nsmb.2942 CrossRefPubMedGoogle Scholar
  44. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297.  https://doi.org/10.1093/nar/gks042 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Putman NF, Lohmann KJ, Putman EM, Quinn TP, Klimley AP, Noakes DLG (2013) Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr Biol 23(4):312–316.  https://doi.org/10.1016/j.cub.2012.12.041 CrossRefPubMedGoogle Scholar
  46. Putman NF, Scanlan MM, Billman EJ, O’Neil JP, Couture RB, Quinn TP, Lohmann KJ, DLG N (2014a) An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr Biol 24(4):446–450.  https://doi.org/10.1016/j.cub.2014.01.017 CrossRefPubMedGoogle Scholar
  47. Putman NF, Jenkins ES, Michielsens CGJ, Noakes DLG (2014b) Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon. J R Soc Interface 11(99):10.  https://doi.org/10.1098/rsif.2014.0542 CrossRefGoogle Scholar
  48. Putman NF, Meinke AM, Noakes DL (2014c) Rearing in a distorted magnetic field disrupts the 'map sense' of juvenile steelhead trout. Biol Lett 10(6):20140169.  https://doi.org/10.1098/rsbl.2014.0169 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Reinert K, Langmead B, Weese D, Evers DJ (2015) Alignment of next-generation sequencing reads. Annu Rev Genomics Hum Genet 16(1):133–151.  https://doi.org/10.1146/annurev-genom-090413-025358 CrossRefPubMedGoogle Scholar
  50. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  51. Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, Lemon C, Bird NH, Koop BF (2014) The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One 9(7):e102089.  https://doi.org/10.1371/journal.pone.0102089 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B (2015) Magnetic particle-mediated magnetoreception. J R Soc Interface 12(110):20150499.  https://doi.org/10.1098/rsif.2015.0499 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114(7):3854–3918.  https://doi.org/10.1021/cr4005296 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Sleptsova-Friedrich I, Li Y, Emelyanov A, Ekker M, Korzh V, Ge R (2001) Fgfr3 and regionalization of anterior neural tube in zebrafish. Mech Dev 102(1-2):213–217.  https://doi.org/10.1016/S0925-4773(01)00280-5 CrossRefPubMedGoogle Scholar
  55. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26(8):1134–1144.  https://doi.org/10.1101/gr.196469.115 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Tran-Viet KN, Soler V, Quiette V, Powell C, Yanovitch T, Metlapally R, Luo X, Katsanis N, Nading E, Young TL (2013) Mutation in collagen II alpha 1 isoforms delineates stickler and Wagner syndrome phenotypes. Mol Vis 19:759–766PubMedCentralPubMedGoogle Scholar
  57. Usman T, Hadlich F, Demasius W, Weikard R, Kuhn C (2017) Unmapped reads from cattle RNAseq data: a source for missing and misassembled sequences in the reference assemblies and for detection of pathogens in the host. Genomics 109(1):36–42.  https://doi.org/10.1016/j.ygeno.2016.11.009 CrossRefPubMedGoogle Scholar
  58. Walbaum JJ (1792) Petri Artedi sueci genera piscium in quibus systema totum ichthyologiae proponitur cum classibus, ordinibus, generum characteribus, specierum differentiis, observationibus plurimis: redactis speciebus 242 ad genera 52: Ichthyologiae pars 3. Impensis Ant. Ferdin. Röse, Grypeswaldiae.Google Scholar
  59. Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390(6658):371–376.  https://doi.org/10.1038/37057 CrossRefPubMedGoogle Scholar
  60. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63.  https://doi.org/10.1038/nrg2484 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Whitacre LK, Tizioto PC, Kim JW, Sonstegard TS, Schroeder SG, Alexander LJ, Medrano JF, Schnabel RD, Taylor JF, Decker JE (2015) What's in your next-generation sequence data? An exploration of unmapped DNA and RNA sequence reads from the bovine reference individual. BMC Genomics 16(1):1114.  https://doi.org/10.1186/s12864-015-2313-7 CrossRefPubMedCentralPubMedGoogle Scholar
  62. Williams AG, Thomas S, Wyman SK, Holloway AK (2014) RNA-seq data: challenges in and recommendations for experimental design and analysis. Curr Protoc Hum Genet 83:11.13.11–11.13.20.  https://doi.org/10.1002/0471142905.hg1113s83 Google Scholar
  63. Wood AW, Matsumoto J, Van Der Kraak G (2004) Thyroglobulin type-1 domain protease inhibitors exhibit specific expression in the cortical ooplasm of vitellogenic rainbow trout oocytes. Mol Reprod Dev 69(2):205–214.  https://doi.org/10.1002/mrd.20118 CrossRefPubMedGoogle Scholar
  64. Zhu W, Wang L, Dong Z, Chen X, Song F, Liu N, Yang H, Fu J (2016) Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Sci Rep 6(1):31347.  https://doi.org/10.1038/srep31347 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Monica B. Arniella
    • 1
  • Robert R. Fitak
    • 1
  • Sönke Johnsen
    • 1
  1. 1.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations