Advertisement

Environmental Biology of Fishes

, Volume 101, Issue 5, pp 699–710 | Cite as

Hierarchical genetic structure of native masu salmon populations in Hokkaido, Japan

  • Shigeru Kitanishi
  • Toshiaki Yamamoto
  • Hirokazu Urabe
  • Kazutaka Shimoda
Article

Abstract

Identification of the spatial extent of genetic structuring that may be influenced by evolutionary, ecological and historical factors is critical for effective conservation or management strategies. Masu salmon Oncorhynchus masou is commonly distributed in Far East, however, many local populations have been under threats of decline due to habitat destruction, overexploitation, and genetic introgression. To reveal the spatial genetic structure of native masu salmon populations in Hokkaido, masu salmon samples were collected from 16 rivers in which there was no official record of artificial releases of any masu salmon stock and were analyzed using 15 microsatellite loci. A Bayesian assignment test revealed that masu salmon populations were divided into two genetically distinct groups: the northeastern and southwestern groups. For within-group genetic structure, all populations, except for geographically proximate populations, were significantly different from each other. AMOVA revealed that genetic variation at among-group level based on groups identified assignment test was greater than that of groups based on geographic locations. There was no significant IBD for the 16 populations. However, the Mantel test revealed significant IBD for the northeastern group, but did not for the southwestern group. This study suggested that native masu salmon populations in Hokkaido exhibit a hierarchical genetic structure that is largely a result of their precise homing behavior. The results of this study also highlight the importance of defining populations by using genetic data rather than by using predefined populations based on geographic locations for the correct determination of genetic structure.

Keywords

Native population Genetic introgression Hatchery Microsatellite Oncorhynchus masou 

Notes

Acknowledgements

The authors are grateful to members of Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization and members of Hokkaido Salmon Propagation Association for their helping in collecting samples. We are grateful to two anonymous reviewers for their constructive comments on this manuscript. This study was conducted with the permission of the Hokkaido Government.

Supplementary material

10641_2018_730_MOESM1_ESM.xlsx (10 kb)
ESM 1 (XLSX 9 kb)
10641_2018_730_MOESM2_ESM.xlsx (59 kb)
ESM 2 (XLSX 58 kb)

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  2. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  3. Brykov VA, Polyakova NE, Prokhorova AV (2003) Phylogeographic analysis of chum salmon Oncorhynchus keta walbaum in Asian populations based on mtDNA variation. Russ J Genet 39(1):61–67.  https://doi.org/10.1023/A:1022074911828 CrossRefGoogle Scholar
  4. Caputo V, Giovannotti M, Cerioni PN, Caniglia ML, Splendiani A (2004) Genetic diversity of brown trout in central Italy. J Fish Biol 65(2):403–418.  https://doi.org/10.1111/j.0022-1112.2004.00458.x CrossRefGoogle Scholar
  5. Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics 163(3):983–996PubMedPubMedCentralGoogle Scholar
  6. Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20(15):2363–2369.  https://doi.org/10.1093/bioinformatics/bth250 CrossRefPubMedGoogle Scholar
  7. Crispo E, Hendry AP (2005) Does time since colonization influence isolation by distance? A meta-analysis. Conserv Genet 6(5):665–682.  https://doi.org/10.1007/s10592-005-9026-4 CrossRefGoogle Scholar
  8. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  9. Edpalina RR, Yoon M, Urawa S, Kusuda S, Urano A, Abe S (2004) Genetic variation in wild and hatchery populations of masu salmon (Oncorhynchus masou) inferred from mitochondrial DNA sequence analysis. Fish Genet Breed Sci 34:37–44Google Scholar
  10. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92(7):832–839.  https://doi.org/10.1007/BF00221895 CrossRefPubMedGoogle Scholar
  11. Eldridge WH, Naish KA (2007) Long-term effects of translocation and release numbers of fine-scale population structure among coho salmon (Oncorhynchus kisutch). Mol Ecol 16(12):2407–2421.  https://doi.org/10.1111/j.1365-294X.2007.03271.x CrossRefPubMedGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50CrossRefGoogle Scholar
  14. Faulks LK, Kerezsy A, Unmack PJ, Johnson JB, Hughes JM (2017) Going, going, gone? Loss of genetic diversity in two critically endangered Australian freshwater fishes, Scaturiginichthys vermeilipinnis and Chlamydogobius squamigenus, from Great Artesian Basin springs at Edgbaston, Queensland, Australia. Aquat Conserv 27:39–50CrossRefGoogle Scholar
  15. Frankham R, Ballow JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511817359 CrossRefGoogle Scholar
  16. Fukushima M, Kameyama S, Kaneko M, Nakao K, Steel EA (2007) Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshw Biol 52(8):1511–1524.  https://doi.org/10.1111/J.1365-2427.2007.01783.X CrossRefGoogle Scholar
  17. Glover KA, Quintela M, Wennevik V, Besnier F, Sorvik AGE, Skaala O (2012) Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One 7(8):e43129.  https://doi.org/10.1371/journal.pone.0043129 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) Available from: http://www2.unil.ch/popgen/softwares/fstat.htm
  19. Heggenes J, Røed KH, Jorde PE, Brabrand A (2009) Dynamic micro-geographic and temporal genetic diversity in vertebrates: the case of lake-spawning populations of brown trout (Salmo trutta). Mol Ecol 18(6):1100–1111.  https://doi.org/10.1111/j.1365-294X.2009.04101.x CrossRefPubMedGoogle Scholar
  20. Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14(4):901–916.  https://doi.org/10.1111/j.1365-294X.2005.02480.x CrossRefPubMedGoogle Scholar
  21. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6(1):13.  https://doi.org/10.1186/1471-2156-6-13 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics 143(3):1369–1381PubMedPubMedCentralGoogle Scholar
  23. Kato F (1991) Life histories of masu and amago salmon (Oncorhynchus masou and Oncorhynchus rhodurus). In: Groot C, Margolis L (eds) Pacific Salmon life histories. UBC Press, Vancouver, pp 447–520Google Scholar
  24. Kawamura K, Kubota M, Furukawa M, Harada Y (2007) The genetic structure of endangered indigenous populations of the amago salmon, Oncorhynchus masou ishikawae, in Japan. Conserv Genet 8(5):1163–1176.  https://doi.org/10.1007/s10592-006-9271-1 CrossRefGoogle Scholar
  25. Kitanishi S, Edo K, Yamamoto T, Azuma N, Hasegawa O, Higashi S (2007) Genetic structure of masu salmon (Oncorhynchus masou) populations in Hokkaido, northernmost Japan, inferred from mitochondrial DNA variation. J Fish Biol 71(sc):437–452.  https://doi.org/10.1111/J.1095-8649.2007.01689.X CrossRefGoogle Scholar
  26. Kitanishi S, Yamamoto T, Higashi S (2009) Microsatellite variation reveals fine-scale genetic structure of masu salmon, Oncorhynchus masou, within the Atsuta River. Ecol Freshw Fish 18(1):65–71.  https://doi.org/10.1111/J.1600-0633.2008.00325.X CrossRefGoogle Scholar
  27. Kitanishi S, Ikeda T, Yamamoto T (2017a) Short-term temporal instability in fine-scale genetic structure of masu salmon. Freshw Biol 62(9):1655–1664.  https://doi.org/10.1111/fwb.12978 CrossRefGoogle Scholar
  28. Kitanishi S, Mukai T, Yamamoto T, Tago Y, Oda M (2017b) Genetic introgression between masu salmon Oncorhynchus masou masou and amago salmon Oncorhynchus masou ishikawae. Nippon Suisan Gakkaishi 83(3):400–402. (in Japanese with English abstract).  https://doi.org/10.2331/suisan.16-00082 CrossRefGoogle Scholar
  29. Kitanishi S, Yamamoto T, Ishii H, Yamaguchi Y, Kobayashi T (2017c) Dispersal patterns of anadromous and freshwater resident masu salmon at different spatial scales in mid-western Hokkaido, Japan. Ichthyol Res 64(1):111–115.  https://doi.org/10.1007/s10228-016-0525-8 CrossRefGoogle Scholar
  30. Koizumi I, Yamamoto S, Maekawa K (2006) Decomposed pairwise regression analysis of genetic and geographic distances reveals a metapopulation structure of stream-dwelling Dolly Varden charr. Mol Ecol 15(11):3175–3189.  https://doi.org/10.1111/j.1365-294X.2006.03019.x CrossRefPubMedGoogle Scholar
  31. Mabuchi K, Senou H, Nishida M (2008) Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan. Mol Ecol 17:796–809CrossRefGoogle Scholar
  32. Mayama H, Nomura T, Ohkuma K (1988) Seaward migration and adult return of the marked masu salmon, Oncorhynchus masou, released in late fall before wintering. Sci Rep Hokkaido Salm Hatch 42:21–36Google Scholar
  33. Miyakoshi Y, Nagata M, Sugiwaka K, Kitada S (2004) Evaluation of stock enhancement programmes for masu salmon in Hokkaido, northern Japan, by two-stage sampling surveys of commercial landings. In: Leber KM, Kitada S, Blankenship HL, Svåsand T (eds) Stock enhancement and sea ranching, 2nd edn. Blackwell, Oxford.  https://doi.org/10.1002/9780470751329.ch16 Google Scholar
  34. Miyakoshi Y, Takahashi M, Ohkuma K, Urabe H, Shimoda K, Kawamula H (2012) Homing of masu salmon in the tributaries of the Shiribetsu River evaluated by returns of marked fish. Sci Rep Hokkaido Fish Res Inst 81:125–129Google Scholar
  35. Morita K, Saito T, Miyakoshi Y, Fukuwaka M, Nagasawa T, Kaeriyama M (2006) A review of Pacific salmon hatchery programmes on Hokkaido Island, Japan. ICES J Mar Sci 63(7):1353–1363.  https://doi.org/10.1016/j.icesjms.2006.03.024 CrossRefGoogle Scholar
  36. Moritz C (1994) Defining 'evolutinarily significant units' for conservation. Trends Ecol Evol 9:373–375CrossRefPubMedGoogle Scholar
  37. Nagata M, Miyakoshi Y, Urabe H, Fujiwara M, Sasaki Y, Kasugai K, Torao M, Ando D, Kaeriyama M (2012a) Erratum to: an overview of salmon enhancement and the need to manage and monitor natural spawning in Hokkaido, Japan. Environ Biol Fish 94(1):359–361.  https://doi.org/10.1007/s10641-011-9945-5 CrossRefGoogle Scholar
  38. Nagata M, Miyakoshi Y, Urabe H, Fujiwara M, Sasaki Y, Kasugai K, Torao M, Ando D, Kaeriyama M (2012b) An overview of salmon enhancement and the need to manage and monitor natural spawning in Hokkaido, Japan. Environ Biol Fish 94(1):311–323.  https://doi.org/10.1007/s10641-011-9882-3 CrossRefGoogle Scholar
  39. Noguchi D, Ikeda M, Nakajima M, Taniguchi N (2003) Isolation and characterization of microsatellite DNA markers for population genetics study of masu salmon, Oncorhynchus masou masou. Fish Genet Breed Sci 33:61–66Google Scholar
  40. Okazaki T (1986) Genetic variation and population structure in masu salmon Oncorhynchus masou of Japan. Bull Jpn Soc Sci Fish 52(8):1365–1376.  https://doi.org/10.2331/suisan.52.1365 CrossRefGoogle Scholar
  41. Olsen JB, Wilson SL, Kretschmer EJ, Jones KC, Seeb JE (2000) Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Mol Ecol 9(12):2185–2187.  https://doi.org/10.1046/j.1365-294X.2000.105317.x CrossRefPubMedGoogle Scholar
  42. Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12(11):3123–3135CrossRefPubMedGoogle Scholar
  43. Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16.  https://doi.org/10.1016/j.tree.2006.09.003 CrossRefPubMedGoogle Scholar
  44. Palti Y, Fincham MR, Rexroad CE (2002) Characterization of 38 polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Mol Ecol Notes 2(4):449–452.  https://doi.org/10.1046/j.1471-8278.2002.00274.x CrossRefGoogle Scholar
  45. Palti Y, Danzmann RG, Rexroad CE (2003) Characterization and mapping of 19 polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Anim Genet 34(2):153–156.  https://doi.org/10.1046/j.1365-2052.2003.00965_7.x CrossRefPubMedGoogle Scholar
  46. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  47. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  49. Raymond M, Rousset F (1995) Genepop (Version-1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249.  https://doi.org/10.1093/oxfordjournals.jhered.a111573 CrossRefGoogle Scholar
  50. Rexroad CE, Coleman RL, Martin AM, Hershberger WK, Killefer J (2001) Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Anim Genet 32(5):317–319.  https://doi.org/10.1046/j.1365-2052.2001.0730b.x CrossRefPubMedGoogle Scholar
  51. Rexroad CE, Coleman RL, Hershberger WK, Killefer J (2002) Eighteen polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Anim Genet 33(1):76–78.  https://doi.org/10.1046/j.1365-2052.2002.0742d.x CrossRefPubMedGoogle Scholar
  52. Rodriguez F, Rexroad CE, Palti Y (2003) Characterization of twenty-four microsatellite markers for rainbow trout (Oncorhynchus mykiss). Mol Ecol Notes 3(4):619–622.  https://doi.org/10.1046/j.1471-8286.2003.00531.x CrossRefGoogle Scholar
  53. Slatkin M, Maddison WP (1990) Detecting isolation by distance using phylogenies of genes. Genetics 126(1):249–260PubMedPubMedCentralGoogle Scholar
  54. Sugiwaka K-i, Kojima H (1984) Influence of individual density on smoltification in wild juvenile masu salmon (Oncorhynchus masou) in the Atsuta River. Sci Rep Hokkaido Fish Hatchery 39:19–37Google Scholar
  55. Suzuki K-iT, Kobayashi T, Matsuishi T, K-i N (2000) Genetic variability of masu salmon in Hokkaido, by restriction fragment length polymorphism analysis of mitochondrial DNA. Nippon Suisan Gakkaishi 66(4):639–646.  https://doi.org/10.2331/suisan.66.639 CrossRefGoogle Scholar
  56. Tamate T, Hayajiri M (2008) The relationship between the number of main dams and the coastal catch of masu salmon (Oncorhynchus masou) in Hokkaido: implications for river ecosystem conservation. Water Sci 52:72–84Google Scholar
  57. Vähä JP, Erkinaro J, Niemela E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16(13):2638–2654.  https://doi.org/10.1111/j.1365-294X.2007.03329.x CrossRefPubMedGoogle Scholar
  58. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8(4):753–756.  https://doi.org/10.1111/j.1755-0998.2007.02061.x CrossRefPubMedGoogle Scholar
  59. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15(6):1419–1439.  https://doi.org/10.1111/j.1365-294X.2006.02890.x CrossRefPubMedGoogle Scholar
  60. Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197(2):769–780.  https://doi.org/10.1534/genetics.114.164822 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Watanabe K (2012) Faunal structure of Japanese freshwater fishes and its artificial disturbance. Environ Biol Fish 94(3):533–547.  https://doi.org/10.1007/s10641-010-9601-5 CrossRefGoogle Scholar
  62. Yamamoto T, Reinhardt UG (2003) Dominance and predator avoidance in domesticated and wild masu salmon Oncorhynchus masou. Fish Sci 69(1):88–94.  https://doi.org/10.1046/j.1444-2906.2003.00591.x CrossRefGoogle Scholar
  63. Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conserv Genet 5(4):529–538.  https://doi.org/10.1023/B:COGE.0000041029.38961.a0 CrossRefGoogle Scholar
  64. Yu J-N, Azuma N, Yoon M, Brykov V, Urawa S, Nagata M, Jin DH, Abe S (2010) Population genetic structure and Phylogeography of Masu Salmon (Oncorhynchus masou masou) inferred from mitochondrial and microsatellite DNA analyses. Zool Sci 27(5):375–385.  https://doi.org/10.2108/Zsj.27.375 CrossRefPubMedGoogle Scholar
  65. Yu J-N, Azuma N, Abe S (2012) Genetic differentiation between collections of hatchery and wild masu salmon (Oncorhynchus masou) inferred from mitochondrial and microsatellite DNA analyses. Environ Biol Fish 94(1):259–271.  https://doi.org/10.1007/s10641-011-9869-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Regional StudiesGifu UniversityGifuJapan
  2. 2.Faculty of Science and TechnologyOita UniversityOitaJapan
  3. 3.Department of Veterinary Nursing and TechnologyNippon Veterinary and Life Science UniversityTokyoJapan
  4. 4.Salmon and Freshwater Fisheries Research InstituteHokkaido Research OrganizationEniwaJapan

Personalised recommendations