Advertisement

Environmental Biology of Fishes

, Volume 98, Issue 8, pp 1895–1912 | Cite as

Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River Basin, Southeast Brazil)

  • Fernanda Bastos dos Santos
  • Fábio Cop Ferreira
  • Katharina Eichbaum Esteves
Article

Abstract

In the Neotropics, the effect of agriculture on freshwater habitats is still poorly understood, particularly with respect to sugarcane expansion to meet increased ethanol demands. The variation in taxonomic composition, community attributes and trophic structure of fish assemblages from streams under different riparian zone preservation conditions were studied. Nine stream reaches under the following riparian vegetation conditions were selected: Native Forest (NF), with mostly primary forest; Secondary Forest (SF), which included sites with vegetation in an advanced stage of regeneration surrounded by sugarcane plantations; and Sugarcane sites (SC), located in areas without riparian vegetation, adjacent to sugarcane crops. Forty-one species were collected. The variance partitioning and partial Redundancy Analysis (pRDA) indicated that community composition and trophic structure were significantly explained by riparian condition and spatial variations, while diversity, richness, abundance and biomass were only explained by season and space, with higher diversity and richness at the SF sites. Abundance-Biomass curves (ABC curves) suggested that sugarcane plantations destabilized fish assemblages, especially at the more intensively managed sites, which seem to influence stream integrity and associated fish fauna. We concluded that both physical conditions of streams and some attributes of fish communities reflected the different levels of preservation of the riparian buffers, but given the influence of regional processes which have a pervasive role in shaping local assemblages, land use at the watershed scale seemed to be important especially to explain the higher richness and diversity found at the SF sites.

Keywords

Deforestation Ichthyofauna Agro-ecosystem Neotropical region Land use 

Notes

Acknowledgments

The authors thank the Instituto de Pesca (APTA/SAA) for providing infrastructure; its staff and students for their help in field work (Sérgio Luiz da Silva, Paulo Henrique Gusmão, Ludmila Cristina Baldi and Katerine Pereira Carvalho); Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support (Proc. 2010/52069-6); Conselho Nacional de Desenvolvimento Científico e Tecnológico for the MsC scholarship (Proc. 154078/2010-7); Osvaldo T. Oyakawa for fish identification; Cíntia Kameyama for macrophyte identification; Mirna Ferracini for map drawing; Antônio Olinto, André Vaz, Leonardo Tachibana and Eduardo Paes for help with statistical analyses and José Carlos Perdigão and Walter Lima for help in locating sampling sites. This study was approved by the Ethics Committee of the Fisheries Institute of São Paulo (CEEAIP) (Protocol 07/2010).

References

  1. Alexandre CV, Esteves KE, De Moura e Mello MAM (2010) Analysis of fish communities along a rural–urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil). Hydrobiologia 64:97–114CrossRefGoogle Scholar
  2. Allan JD, Castillo MM (2007) Stream ecology: Structure and function of running waters. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  3. Allan JD, Erickson DL, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161CrossRefGoogle Scholar
  4. APHA (2005) Standard methods for the examination of water and freshwater. American Public Health Association, WashingtonGoogle Scholar
  5. Araújo FG, Peixoto MG, Pinto BCT, Teixeira TP (2009) Distribution of guppies Poecilia reticulata (Peters, 1860) and Phalloceros caudimaculatus (Hensel, 1868) along a polluted stretch of the Paraíba do Sul River, Brazil. Braz J Biol 69:4148CrossRefGoogle Scholar
  6. Barletta M, Jaureguizar AJ, Baigun C et al (2010) Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J Fish Biol 76:2118–2176PubMedCrossRefGoogle Scholar
  7. Begon M, Mortimer M (1986) Population ecology, a unified study of animals and plants. Blackwell Scientific Publications, LondonGoogle Scholar
  8. Bilby RE, Likens GE (1980) Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61:1107–1113CrossRefGoogle Scholar
  9. Birnbaum JSK, Winemiller O, Shen L et al (2007) Associations of watershed vegetation and environmental variables with fish and crayfish assemblages in headwater streams of the Pedernales River, Texas. River Res Appl 996:979–996CrossRefGoogle Scholar
  10. Bisson PA, Raphael MG, Foster AD, Jones LLC (1996) Influence of site and landscape features on vertebrate assemblages in small streams. Proc Wood Compat Initiative Workshop 6:61–72Google Scholar
  11. Bojsen BH, Barriga R (2002) Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshw Biol 47:2246–2260CrossRefGoogle Scholar
  12. Bonants P, Edema M (2012) Q-bank – Comprehensive databases on quarantine plant pests and diseases. http://www.q-bank.eu/. Accessed 22 November 2013
  13. Borcard D, Legendre P, Drapeau PD (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  14. Braga FMS, Gomiero LM (2009) Alimentação de peixes na microbacia do Ribeirão Grande, Serra da Mantiqueira oriental, SP. Biota Neotrop 9:207–212CrossRefGoogle Scholar
  15. Britski HA (1972) Peixes de água doce do Estado de São Paulo – Sistemática. In: Comissão interestadual da bacia Paraná- Uruguay. Poluição e Piscicultura, notas sobre ictiologia, poluição e piscicultura. FSPUSP e Instituto de Pesca, São Paulo, pp 79–108Google Scholar
  16. Bunn SE, Davies PM, Kellaway DM (1997) Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Mar Freshw Res 48:173–179CrossRefGoogle Scholar
  17. Burcham J (1988) Fish communities and environmental characteristics of two lowland streams in Costa Rica. Rev Biol Trop 36:273–285Google Scholar
  18. Callisto M, Ferreira WR, Moreno P, Goulart M, Petrucio M (2002) Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividades de ensino e pesquisa (MG-RJ). Acta Limnol Bras 14:91–98Google Scholar
  19. CANASAT (2011) Monitoramento da Cana-de-açúcar via imagens de satélite. http://www.dsr.inpe.br/laf/canasat/. Accessed 05 January 2012
  20. Caram RO (2010) Mudanças no uso e cobertura do solo e resposta hidrológica da bacia do rio Piracicaba. Dissertation, University of São PauloGoogle Scholar
  21. Casatti L, Castro RMC (1998) A fish community of the São Francisco River headwaters riffles, Southeastern Brazil. Ichthyol Explor Fres 9:229–242Google Scholar
  22. Casatti L, Ferreira CP, Carvalho FR (2009) Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632:273–283CrossRefGoogle Scholar
  23. Casatti L, Ferreira CP, Langeani F (2008) A fish-based biotic integrity index for the assessment of lowland streams in Southeastern Brazil. Hydrobiologia 623:173–189CrossRefGoogle Scholar
  24. Casatti L, Langeani F, Ferreira CP (2006a) Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environ Manag 38:974–982CrossRefGoogle Scholar
  25. Casatti L, Langeani F, Silva AM, Castro RMC (2006b) Stream fish, water and habitat quality in a pasture dominated basin, Southeastern Brazil. Braz J Biol 66:681–696PubMedCrossRefGoogle Scholar
  26. Casatti L, Rocha FC, Pereira DC (2005) Habitat use by two species of Hypostomus (Pisces, Loricariidae) in Southeastern Brazilian streams. Biota Neotrop 5:1–9Google Scholar
  27. Casatti L, Teresa FB, Gonçalves-Souza T et al (2012) From forests to cattail: how does the riparian zone influence stream fish? Neotrop Ichthyol 10:205–214CrossRefGoogle Scholar
  28. Castro RMC, Casatti L, Santos HF et al (2004) Estrutura e composição da ictiofauna de riachos da bacia do Rio Grande no Estado de São Paulo, Sudeste do Brasil. Biota Neotrop 4:57–95CrossRefGoogle Scholar
  29. CBH-PCJ Comitê das bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí (2010) Relatório da situação dos recursos hídricos da UGRHI 5. http://www.comitepcj.sp.gov.br/download/RS/PCJ_RS-2010_RelatorioFinal.pdf. Accessed 05 February 2012
  30. CBH-PCJ Comitê das bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí (2011) Relatório da situação dos recursos hídricos da UGRHI 5. http://www.comitepcj.sp.gov.br/download/RS/PCJ_RS-2011_RelatorioFinal.pdf . Accessed 18 March 2012
  31. CETESB Companhia de Tecnologia de Saneamento Ambiental (2010) Qualidade das águas superficiais no Estado de São Paulo. Série Relatórios, São PauloGoogle Scholar
  32. CIIAGRO Centro Integrado de Informações Agrometeorológicas (2012). http://www.ciiagro.sp.gov.br. Accessed 10 February 2012
  33. Clarke KR, Gorley RN (2006) Software Primer v6 user Manual/Tutorial. Primer-E, PlymouthGoogle Scholar
  34. Clarke KR, Warwick RM (2001) Change in marine communities: An approach to statistical analysis and interpretation. Primer-E, PlymouthGoogle Scholar
  35. CONAMA Conselho Nacional de Meio Ambiente (2005) Resolução no 357 de 17 de março de 2005. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília (DF)Google Scholar
  36. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  37. Corbi JJ, Strixino ST, dos Santos A, Del Grande M (2006) Environmental diagnostic of metals and organochlorinated compounds in streams near sugar cane plantations activity (São Paulo State, Brazil). Quim Nova 29:61–65CrossRefGoogle Scholar
  38. Costa PF, Schulz UH (2010) The fish community as an indicator of biotic integrity of the streams in the Sinos River basin, Brazil. Braz J Biol 70:195–205CrossRefGoogle Scholar
  39. DEFRA – Department for Environment, Food & Rural Affairs (2010) Floating Pennywort, Hydrocotyle ranunculoides. https://secure.fera.defra.gov.uk/nonnativespecies/factsheet/downloadFactsheet.cfm?speciesId=1766. Accessed 20 March 2013
  40. Dray S, Pélissier R, Couteron P et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275CrossRefGoogle Scholar
  41. Dudgeon D (2008) Tropical stream ecology. Academic Press, LondonGoogle Scholar
  42. Esteves FA (1998) Fundamentos de Limnologia. Interciências, Rio de JaneiroGoogle Scholar
  43. Esteves KE, Alexandre CV (2011) Development of an index of biotic integrity based on fish communities to assess the effects of rural and urban land use on a stream in Southeastern Brazil. Int Rev Hydrobiol 96:296–317CrossRefGoogle Scholar
  44. Ferreira A, Paula FR, Ferraz SFB, Gerhard P, Kashiwaqui EAL, Cyrino JEP, Martinelli LA (2012a) Riparian coverage affects diets of characids in neotropical streams. Ecol Freshw Fish 21:12–22CrossRefGoogle Scholar
  45. Ferreira A, Cyrino JEP, Duarte-Neto PJ, Martinelli LA (2012b) Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil. Mar Freshw Res 63:1272–1282CrossRefGoogle Scholar
  46. Ferreira CP, Casatti L (2006) Integridade biótica de um córrego na Bacia do Alto Rio Paraná avaliada por meio da comunidade de peixes. Biota Neotrop 6:1–25Google Scholar
  47. Ferreira FC, Silva AT, Gonçalves CS, Jr P (2014) Disentangling the influences of habitat structure and limnological predictors on stream fish communities of a coastal basin, southeastern Brazil. Neotrop Ichthyol 12:177–186CrossRefGoogle Scholar
  48. Ferreira KM (2007) Biology and ecomorphology of stream fishes from the Mogi-Guaçu. Neotrop Ichthyol 5:311–326Google Scholar
  49. Filoso S, Martinelli LA, Williams MR, Lara LB, Krusche A, Ballester MV, Victoria R, Camargo PB (2003) Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65:275–294CrossRefGoogle Scholar
  50. Fiorio PR, Demattê JAM, Sparovek G (2000) Cronologia e impacto ambiental do uso da terra na Microbacia Hidrográfica do Ceveiro, em Piracicaba, SP. Pesq Agrop Brasileira 35:671–679CrossRefGoogle Scholar
  51. Furlan N, Esteves KE, Quináglia GA (2012) Environmental factors associated with fish distribution in an urban neotropical river (Upper Tietê River Basin, São Paulo, Brazil). Environ Biol Fish 96:77–92CrossRefGoogle Scholar
  52. Genito D, Gburek WJ, Sharpley AN (2002) Response of stream macro invertebrates to agricultural land cover in a small watershed. J Freshw Ecol 17:109–119CrossRefGoogle Scholar
  53. Gerhard P (2005) Comunidades de peixes de riachos em função da paisagem da bacia do rio Corumbataí, Estado de São Paulo. Dissertation, University of São PauloGoogle Scholar
  54. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 107:16732–16737PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gibran FZ, Ferreira KM, Castro RMC (2001) Diet of Crenicichla britskii (Perciformes: Cichlidae) in a stream of Rio Aguapeí basin, upper Rio Paraná system, Southeastern Brazil. Biota Neotrop 1:1–5CrossRefGoogle Scholar
  56. Godinho FN (2008) The influence of riparian vegetation on freshwater fish. In: Arizpe D, João AM, Rabaça E (eds) Sustainable riparian zones - a management guide. Generalitat Valenciana, Spain, pp 96–100Google Scholar
  57. Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energ Policy 36:2086–2097CrossRefGoogle Scholar
  58. Gregory SV, Swanson FJ, Mckee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551CrossRefGoogle Scholar
  59. Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD III (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci U S A 95:14843–14847PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hayes JP, Adam MD, Bateman D et al (1996) Integrating research and forest management in riparian áreas of the Oregon Coast Range. West J Appl For 11:85–89Google Scholar
  61. Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc 30:582–598Google Scholar
  62. Hued AC, Bistoni MA (2005) Development and validation of a biotic index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 543:279–298CrossRefGoogle Scholar
  63. Humpl M, Lusk S (2006) Effect of multiple electro-fishing on determining the structure of fish communities in small streams. Folia Zool 55:315–322Google Scholar
  64. IRRIGART - Engenharia e Consultoria em Recursos Hídricos (2006) Plano de gerenciamento integrado para remediação e proteção dos recursos hídricos da Sub-Bacia do Atibaia com ênfase no Reservatório de Salto Grande - Americana – SP. http://www.comitepcj.sp.gov.br/download/PGISaltoGrande_Relatorio.pdf. Accessed 20 November 2011
  65. IRRIGART Engenharia e Consultoria em Recursos Hídricos (2007) Bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí: situação dos recursos hídricos 2004/2006 - relatório síntese. http://www.comitepcj.sp.gov.br/download/RS/RS-04-06_Relatorio-Sintese.pdf. Accessed 12 November 2011
  66. Iwata T, Nakano S, Inoue M (2012) Impacts of past riparian deforestation on stream communities in a tropical rain forest. Ecol Appl 13:461–473CrossRefGoogle Scholar
  67. Karr JR, Toth LA, Dudley DR (1985) Fish communities of Midwestern rivers: a history of degradation. Bioscience 35:90–95CrossRefGoogle Scholar
  68. Krebs CJ (1989) Ecological methodology. Harper Collins Publishers, New YorkGoogle Scholar
  69. Lammert M, Allan JD (1999) Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environ Manag 23:257–270CrossRefGoogle Scholar
  70. Lorion CM, Kennedy BP (2009) Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecol Appl 19:468–479PubMedCrossRefGoogle Scholar
  71. Ludwig A, Reynolds F (1988) Statistical ecology: A primer on methods and computing. John Wiley & Sons, New YorkGoogle Scholar
  72. MAPPC (2012) Municipal Agricultural Production and Population Census (Instituto Brasileiro de Geografia e Estatistica. http://go.nature.com/vdm5lC. Accessed 12 February 2014
  73. Marceniuk AP, Hilsdorf AWS (2010) Peixes das cabeceiras do Rio Tietê e Parque das Neblinas. Canal 6, BauruGoogle Scholar
  74. Marques VS, Argento MSF (1988) O uso de flutuadores para avaliação da vazão de canais fluviais. Geociências 7:173–186Google Scholar
  75. Martinelli LA, Ballester MV, Krusche A, Victoria RL, Camargo PB, Bernardes M, Ometto JPHB (1999) Land-cover changes and δ13C composition of riverine particulate organic matter in the Piracicaba River Basin (southeast region of Brazil). Limnol Oceanogr 44:1826–1833CrossRefGoogle Scholar
  76. Mazzoni R, Fenerich-Verani N, Caramaschi EP (2000) Electrofishing as a sampling technique for coastal stream fish populations and communities in the Southeast of Brazil. Braz J Biol: 205–216Google Scholar
  77. Melo AS, Schneck F, Hepp LU, Simões NR, Siqueira T, Bini LM (2011) Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnol Bras 23:318–331CrossRefGoogle Scholar
  78. Murphy ML, Meehan RW (1991) Stream ecosystem. Am Fish Soc Spec Publ 19:17–46Google Scholar
  79. Naiman RJ, Décamps H (1997) The ecology of interfaces : riparian zones. Annu Rev Ecol Syst 28:621–658CrossRefGoogle Scholar
  80. Nislow KH (2005) Forest change and stream fish habitat: lessons from “Olde” and New England. J Fish Biol 67:186–204CrossRefGoogle Scholar
  81. Ometto JPHB, Martinelli LA, Ballester MV, Gessner A, Krusche AV, Victoria RL, Williams M (2000) Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil. Freshw Biol 44:327–337CrossRefGoogle Scholar
  82. Oyakawa OT, Akama A, Mautari KC, Nolasco JC (2006) Peixes de riachos da Mata Atlântica nas Unidades de Conservação do Vale do Ribeira de Iguape no Estado de São Paulo. Editora Neotropica, São PauloGoogle Scholar
  83. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  84. PCJ (Comitês das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí) (2012) Plano das bacias hidrográficas dos Rios Piracicaba, Capivari e Jundiaí 2010 a 2020 - relatório síntese. ArtPrinter Gráficos, São PauloGoogle Scholar
  85. Piacente FJ (2005) Agroindústria canavieira e o sistema de gestão ambiental: o caso das usinas localizadas nas bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí. Dissertation, University of CampinasGoogle Scholar
  86. Pusey BJ, Arthington AA (2003) Importance of the riparian zone to the conservation and management of freshwater fish : a review. Mar Freshw Res 54:1–16CrossRefGoogle Scholar
  87. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  88. Rabeni CF, Smale MA (1995) Effects of siltation on stream fishes and the potential mitigating role of the buffering riparian zone. Hydrobiologia 303:211–219CrossRefGoogle Scholar
  89. Riseng CM, Wiley MJ, Black RW, Munn MD (2011) Impacts of agricultural land use on biological integrity: a causal analysis. Ecol Appl 21:3128–3146CrossRefGoogle Scholar
  90. Rosgen DL (1994) A classification of natural rivers. Catena 22:169–199CrossRefGoogle Scholar
  91. Santos I, Fill HD, Sugai MRVB, Buba H, Kishi RT, Marone D, Lautert LF (2001) Hidrometria aplicada. Instituto de Tecnologia para o Desenvolvimento, CuritibaGoogle Scholar
  92. Schlosser IJ (1995) Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303:71–81CrossRefGoogle Scholar
  93. SMA - Secretaria do Meio Ambiente (2011) Biodiversidade no Estado de São Paulo. Secretaria de Estado do Meio Ambiente, São PauloGoogle Scholar
  94. Smeets E, Junginger M, Faaij A, Walter A, Dolzan P (2006) Sustainability of Brazilian bio-ethanol . http://www.chem.uu.nl/nws/www/general/ personal/smeets_a_files/nieuw/E2006-110. Report NWS- E-2006-110, ISBN 90-8672-012-9
  95. Stanfield W, Kilgour BW (2013) How proximity of land use affects stream fish and habitat. River Res Appl 29:891–905CrossRefGoogle Scholar
  96. Stauffer JC, Goldstein RM, Newman RM (2000) Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams. Can J Fish Aquat Sci 57:307–316CrossRefGoogle Scholar
  97. Teixeira-De Mello F, Kristensen EA, Meerhoff M, González-Bergonzoni I, Baattrup-Pedersen A, Iglesias C, Jeppesen E (2014) Monitoring fish communities in wadeable lowland streams: comparing the efficiency of electrofishing methods at contrasting fish assemblages. Environ Monit Assess 186:1665–1677PubMedCrossRefGoogle Scholar
  98. ter Braak CFJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  99. ter Braak CJF (1987) CANOCO - a FORTRAN Program for canonical community ordination by partial, Detrended, Canonical correspondence analysis, Principal components analysis, and Redundance analysis. Agricultural Mathematics Group, Wageningen, The NetherlandsGoogle Scholar
  100. ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5), Ithaca, NY, USAGoogle Scholar
  101. Tófoli RM, Alves GH, Higut R, Cunico AM, Hahn NS (2013) Diet and feeding selectivity of a benthivorous fish in streams: responses to the effects of urbanization. J Fish Biol 83:39–51PubMedCrossRefGoogle Scholar
  102. van den Wollenberg AL (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219CrossRefGoogle Scholar
  103. Vazzoler AEA (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM, MaringáGoogle Scholar
  104. Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12CrossRefGoogle Scholar
  105. Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol 92:557–562CrossRefGoogle Scholar
  106. Whately M, Cunha P (2007) Cantareira 2006: um olhar sobre o maior manancial de água da Região Metropolitana de São Paulo. Instituto Socioambiental, São PauloGoogle Scholar
  107. Wichert G, Rapport D (1998) Fish community structure as a measure of degradation and rehabilitation of Riparian systems in an agricultural drainage basin. Environ Manag 22:425–443CrossRefGoogle Scholar
  108. Wright JP, Flecker AS (2004) Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biol Conserv 120:439–447CrossRefGoogle Scholar
  109. Yemane D, Field JG, Leslie RW (2005) Exploring the effects of fishing on fish assemblages using abundance biomass comparison (abc) curves. ICES J Mar Sci 62:374–379CrossRefGoogle Scholar
  110. Zeni JO, Casatti L (2014) The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726:259–270CrossRefGoogle Scholar
  111. Zippin C (1958) An evaluation of the removal method of estimating animal populations. Biometrics 12:163–169CrossRefGoogle Scholar
  112. Zuubier P, Vooren JV (2008) Sugarcane ethanol: Contributions to climate change mitigation and the environment. Wageningen Academic Publishers, NetherlandsCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fernanda Bastos dos Santos
    • 1
  • Fábio Cop Ferreira
    • 2
  • Katharina Eichbaum Esteves
    • 3
  1. 1.Postgraduate Course in Aquaculture and FisheriesFisheries InstituteSão PauloBrazil
  2. 2.Campus Baixada Santista, Departamento de Ciências do Mar - DCMARUniversidade Federal de São PauloSantosBrazil
  3. 3.Centro de Pesquisa e Desenvolvimento em Recursos HídricosFisheries InstituteSão PauloBrazil

Personalised recommendations