Skip to main content

Advertisement

Log in

Feeding ecomorphology of seven demersal marine fish species in the Mexican Pacific Ocean

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

How fish functional morphology shapes species co-existence and assemblage diversity patterns is a fundamental issue in ecological research. In fishes, much is known about the ecomorphological relationships of feeding morphology in coral reef fishes and in freshwater taxa inhabiting distinct environments. However, little is known about the patterns and processes shaping morphological variation in other oceanic taxa; particularly those inhabiting soft bottom habitats. In this study, we assessed patterns of feeding ecomorphology in seven demersal teleost species associated with soft bottoms of the continental shelf in the central Mexican Pacific Ocean. Feeding analyses indicated that some species groups shared similar diets. Likewise, patterns of morphological variation based on geometric morphometrics demonstrated that some taxa did not differ in body shape, while patterns of variation in other species were seen in body length and height, caudal peduncle height and the anal fin anterior insertion point. A multivariate association between diet composition data and overall body shape indicated significant ecomorphological relationships, describing a continuum between species displaying benthopelagic morphology and specializing on prey with high speed swimming ability (Engraulidae), versus species with benthic morphology and specializing on fast escape prey (crustacea). The clear ecomorphological patterns observed for these seven species at both the individual and species levels imply that environmental conditions and resource availability allow these taxa to differentially inhabit and exploit the soft bottom ecosystem. Fish diversity is principally represented by the benthic morphology, although benthopelagic morphology, also show a high degree of success in this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams DC, Collyer ML (2007) Analysis of character divergence along environmental gradients and other covariates. Evolution 61:510–515

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:1143–1154

    Article  PubMed  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24(1):7–14. doi:10.4404/hystrix-24.1-6283

    Google Scholar 

  • Adite A, Winemiller KO (1997) Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience 4:6–23

    Google Scholar 

  • Aguilar-Medrano R, Frédérich B, de Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613

    Article  Google Scholar 

  • Alexander RMCN (1978) Functional design in fishes. Hutchinson University Library, London

    Google Scholar 

  • Amezcua F (1996) Peces demersales de la plataforma continental del Pacífico central de México. Instituto de Ciencias del Mar y Limnología. UNAM/CONABIO, México

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Antonucci F, Costa C, Aguzzi J, Cataudella S (2009) Ecomorphology of morpho-functional relationships in the family of Sparidae: a quantitative statistic approach. J Morphol 270:843–855

    Article  PubMed  Google Scholar 

  • Arif S, Adams DC, Wicknick JA (2007) Bioclimatic modeling, morphology, and behavior reveal alternative mechanisms regulating the distributions of two parapatric salamander species. Evol Ecol Res 9:843–854

    Google Scholar 

  • Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33:357–424

    Article  Google Scholar 

  • Bizarro JJ, Robinson HJ, Rinewalt CS, Ebert DA (2007) Comparative feeding ecology of four sympatric skate species off central California, USA. Environ Biol Fish 80:197–220

    Article  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. Stat Notes BMJ 310:170

    CAS  Google Scholar 

  • Bock WJ (1994) Concepts and methods in ecomorphology. J Biosci 19(4):403–413

    Article  Google Scholar 

  • Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, United States

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: localizing group differences in outline shape. Med Image Anal 1:225–243

    Article  CAS  PubMed  Google Scholar 

  • Bookstein FL, Schäfer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice DE, Rohlf FJ, Recheis W, Mariam AJ, Marcus LF (1999) Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat Rec (New Anat) 257:217–224

    Article  CAS  Google Scholar 

  • Brönmark C, Miner JG (1992) Predator-induced phenotypical change in body morphology in crucian carp. Science 258:1348–1350

    Article  PubMed  Google Scholar 

  • Castro P, Huber ME (2007) Marine Biology. McGraw-Hill, New York

    Google Scholar 

  • Cochran-Biederman JL, Winemiller KO (2010) Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environ Biol Fish 88:143–152

  • Collyer ML, Adams DC (2007) Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–692

    Article  PubMed  Google Scholar 

  • Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738

    Article  Google Scholar 

  • Day T, McPhail JD (1996) The effect of behavioural and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp). Oecologia 108:380–388

    Article  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford Unievrsity Press, New York

    Google Scholar 

  • Dill LM (1974) The escape response of the zebra danio (Brachydanio rerio). I. The stimulus for escape. Anim Behav 22:710–721

    Google Scholar 

  • Domenici P (2010a) Escape responses in fish: kinematics, performance and behaviour. In: Domenici P, Kapoor BG (eds) Fish locomotion: an eco-ethological perspective. Science Publishers, Enfield, pp 123–170

    Chapter  Google Scholar 

  • Domenici P (2010b) Context-dependent variability in the components of fish escape response: integrating locomotor performance and behaviour. J Exp Zool 313A:59–79

    Article  Google Scholar 

  • Ferry LA, Cailliet GM (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In: MacKinlay D, Shearer K (eds) Feeding Ecology and Nutrition in Fish. International Congress of the Biology of Fishes. American Fisheries Society, Bethesda, pp 71–80

    Google Scholar 

  • Ferry-Graham LA, Gibb AC, Hernandez LA (2008) Premaxillary movements in cyprinodontiform fishes: an unusual protrusion mechanism facilitates “picking” prey capture. Zoology 111:455–466

    Article  PubMed  Google Scholar 

  • Gibson RN, Ezzi IA (1987) Feeding relationships of a demersal fish assemblage on the west coast of Scotland. J Fish Biol 31: 55–69

  • Guedes APP, Araújo FG (2008) Trophic resource partitioning among five flatfish species (Actinopterygii, Pleuronectiformes) in a tropical bay in south-eastern Brazil. J Fish Biol 72:1035–1054

    Article  Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98

    Chapter  Google Scholar 

  • Kassam DD, Adams DC, Ambali AJD, Yamaoka A (2003) Body shape variation in relation to resource partitioning within cichlid trophic guilds coexisting along the rocky shore of Lake Malawi. Anim Biol 53:59–70

    Article  Google Scholar 

  • Labropoulou M, Markakis G (1998) Morphological-dietary relationships within two assemblages of marine demersal fishes. Environ Biol Fish 51:309–319

  • Lauder GV, Madden PGA (2007) Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids 43:641–653

    Article  Google Scholar 

  • Lavin PA, McPhail JD (1985) The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Can J Zool 63:2632–2638

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology: developments in environmental modeling. Elsevier, Netherlands

    Google Scholar 

  • Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Am Zool 30:209–221

    Google Scholar 

  • Liem KF (1993) Ecomorphology of the teleostean skull. In: Hanken J, Hall BK (eds) The skull: functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 422–452

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • MathWorks (2008) Matlab: The Language of Technical Computing. Versión 7.7 http://www.mathworks.com

  • Motta PJ, Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth J Zool 42:400–415

    Article  Google Scholar 

  • Motta PJ, Norton SF, Luczkovich JJ (1995a) Perspectives on the ecomorphology of bony fish. Environ Biol Fish 44:11–20

    Article  Google Scholar 

  • Motta PJ, Clifton KB, Hernández P, Eggold BT (1995b) Ecomorphological correlates in ten species of subtropical sea grass fishes: diet and microhabitat utilization. Environ Biol Fish 44:37–60

    Article  Google Scholar 

  • Nagelkerke LAJ, Sibbing FA, Osse JWM (1995) Morphological divergence during growth in the large barbs (Barbus spp.) of Lake Tana, Ethiopia. Neth J Zool 45:431–454

    Article  Google Scholar 

  • Navarro-González JA, Bohórquez-Herrera J, Navia AF, Cruz-Escalona VH (2012) Diet composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico. Cienc Mar 38(2):347–362

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the world. John Wiley and Sons, Canada

    Google Scholar 

  • Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fish 44:287–304

    Article  Google Scholar 

  • Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Wagner H (2014) Community Ecology Package “vegan”. http://cran.r-project.org

  • Oliveira EF, Goulart E, Breda L, Minte-Vera CV, de Souza LR, Rizzato M (2010) Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyol 8:569–586

    Google Scholar 

  • Parsons KJ, Robinson BW (2006) Replicated evolution of integrated plastic responses during early adaptive divergence. Evolution 60(4):801–8013

    Article  PubMed  Google Scholar 

  • Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia. Ecology 50:1012–1030

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. Versión 3.0.2 http://www.r-project.org

  • Reilly SM, Wainwright PC (1994) Conclusion: ecological morphology and the power of integration. In: Wainwright PC, Reilly SM (eds) Ecological Morphology. University of Chicago Press, Chicago, pp 339–354

    Google Scholar 

  • Rickefls RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. The University of Chicago Press, United States, pp 13–41

    Google Scholar 

  • Rohlf FJ (2013a) tpsDig2. Versión 2.17 http://life.bio.sunysb.edu/morph/

  • Rohlf FJ (2013b) tpsRelw, Versión 1.53 http://life.bio.sunysb.edu/morph/

  • Rohlf FJ, Corti M (2000) The use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Ross ST (1986) Resource partitioning in fish assemblages: a review of filed studies. Copeia 1986(2):352–388

    Article  Google Scholar 

  • Rüber L, Adams DC (2001) Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. J Evol Biol 14:325–332

    Article  Google Scholar 

  • Ruehl CB, DeWitt TJ (2007) Trophic plasticity and foraging performance in red drum, Sciaenops ocellatus (Linnaeus). J Exp Mar Biol Ecol 349:284–294

    Article  Google Scholar 

  • Schoener T (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Sibbing F, Nagelkerke L, Osse J (1994) Ecomorphology as a tool in fisheries: identification and ecotyping of Lake Tana barbs (Barbus intermedius), Ethiopia. Neth J Agric Sci 42:77–85

    Google Scholar 

  • Smirnov SA, Makeyeva AP, Smirnov AI (1995) Development of ecomorphology of fishes in Russia. Environ Biol Fish 44:23–33

    Article  Google Scholar 

  • Smith-Vaniz WF (1995) Carangidae. Jureles, pámpanos, cojinúas, zapateros, cocineros, casabes, macarelas, chicharros, jorobados, medregales, pez pilota. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem V (eds) Guia FAO para Identification de Especies para los Fines de la Pesca. Pacifico Centro-Oriental. FAO, Rome, pp 940–986

    Google Scholar 

  • Stabel OB, Lwin MS (1997) Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environ Biol Fish 49:145–149

    Google Scholar 

  • Standen EM, Lauder GV (2007) Hydrodynamic function in dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210:325–339

    Article  CAS  PubMed  Google Scholar 

  • Systat Software Inc (2008) SigmaPlot for Windows Version 11.0 http://www.sigmaplot.com

  • Taper ML, Case TJ (1985) Quantitative genetic models for the coevolution of character displacement. Ecology 66:355–371

    Article  Google Scholar 

  • Tripp-Valdez A, Arreguin-Sánchez F (2009) The use of stable isotopes and stomach contents to identify dietary components of the spotted rose snapper, Lutjanus guttatus (Steindachner, 1869), off the eastern coast of the southern Gulf of California. J Fish Aquat Sci 4:274–284

    Article  Google Scholar 

  • Tripp-Valdez A, Arreguin-Sánchez F, Zetina-Rejón MJ (2012) The food of Selene peruviana (Actinopterigii: Perciformes: Carangidae) in the southern Gulf of California. Acta Ichthyol Piscat 42(1):1–7

    Article  Google Scholar 

  • Tytell ED (2006) Median fin function in bluegill sunfish, Lepomis macrochirus: streamwise vortex structure during steady swimming. J Exp Biol 209:1516–1534

    Article  PubMed  Google Scholar 

  • Watson DJ, Balon EK (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of Northern Borneo. J Fish Biol 25:371–384

    Article  Google Scholar 

  • Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120

    Google Scholar 

  • Webb PW (1986) Effect if body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Can J Fish Aquat Sci 43:763–771

    Article  Google Scholar 

  • Winemiller KO (1991a) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365

    Article  Google Scholar 

  • Winemiller KO (1991b) Comparative ecology of Serranochromis species (Teleostei: Cichlidae) in the Upper Zambezi River. J Fish Biol 39:617–639

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the following projects: Mexico’s National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnología, CONACyT; SEP-CONACyT 180894) and National Polytechnical Institute (Instituto Politécnico Nacional, IPN; SIP-IPN 20140234). The authors thank the Adams Evolutionary and Theoretical Morphology Lab at Iowa State University, and its members for the methodology and data analysis support. JBH was funded by a scholarship from CONACyT and the Comprehensive Institute Building Program (Programa Integral de Fortalecimiento Institucional, PIFI) from the IPN for the M.Sc. and Ph.D. studies. VHCE was supported by programs from the IPN: Stimulus for the Researchers Performance (Estímulos al Desempeño de los INvestigadores, EDI) and Comission for the Operational and Promotion of Academic Activities (Comisión de Operación y Fomento de Actividades Académicas, COFAA). Capture and processing of fish followed the Mexican official regulation norm for shrimp fisheries (Diario Oficial de la Federación 2014). The authors also thank David Noakes and two anonymous referees for their excellent suggestions on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena Bohórquez-Herrera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 674 kb)

ESM 2

(TXT 2.24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohórquez-Herrera, J., Cruz-Escalona, V.H., Adams, D.C. et al. Feeding ecomorphology of seven demersal marine fish species in the Mexican Pacific Ocean. Environ Biol Fish 98, 1459–1473 (2015). https://doi.org/10.1007/s10641-014-0373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0373-1

Keywords

Navigation