Environmental Biology of Fishes

, Volume 98, Issue 5, pp 1459–1473 | Cite as

Feeding ecomorphology of seven demersal marine fish species in the Mexican Pacific Ocean

  • Jimena Bohórquez-Herrera
  • Víctor H. Cruz-Escalona
  • Dean C. Adams
  • Mark S. Peterson


How fish functional morphology shapes species co-existence and assemblage diversity patterns is a fundamental issue in ecological research. In fishes, much is known about the ecomorphological relationships of feeding morphology in coral reef fishes and in freshwater taxa inhabiting distinct environments. However, little is known about the patterns and processes shaping morphological variation in other oceanic taxa; particularly those inhabiting soft bottom habitats. In this study, we assessed patterns of feeding ecomorphology in seven demersal teleost species associated with soft bottoms of the continental shelf in the central Mexican Pacific Ocean. Feeding analyses indicated that some species groups shared similar diets. Likewise, patterns of morphological variation based on geometric morphometrics demonstrated that some taxa did not differ in body shape, while patterns of variation in other species were seen in body length and height, caudal peduncle height and the anal fin anterior insertion point. A multivariate association between diet composition data and overall body shape indicated significant ecomorphological relationships, describing a continuum between species displaying benthopelagic morphology and specializing on prey with high speed swimming ability (Engraulidae), versus species with benthic morphology and specializing on fast escape prey (crustacea). The clear ecomorphological patterns observed for these seven species at both the individual and species levels imply that environmental conditions and resource availability allow these taxa to differentially inhabit and exploit the soft bottom ecosystem. Fish diversity is principally represented by the benthic morphology, although benthopelagic morphology, also show a high degree of success in this environment.


Demersal marine fish Ecomorphology Functional ecology Geometric morphometrics Trophic ecology 



This research was partially funded by the following projects: Mexico’s National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnología, CONACyT; SEP-CONACyT 180894) and National Polytechnical Institute (Instituto Politécnico Nacional, IPN; SIP-IPN 20140234). The authors thank the Adams Evolutionary and Theoretical Morphology Lab at Iowa State University, and its members for the methodology and data analysis support. JBH was funded by a scholarship from CONACyT and the Comprehensive Institute Building Program (Programa Integral de Fortalecimiento Institucional, PIFI) from the IPN for the M.Sc. and Ph.D. studies. VHCE was supported by programs from the IPN: Stimulus for the Researchers Performance (Estímulos al Desempeño de los INvestigadores, EDI) and Comission for the Operational and Promotion of Academic Activities (Comisión de Operación y Fomento de Actividades Académicas, COFAA). Capture and processing of fish followed the Mexican official regulation norm for shrimp fisheries (Diario Oficial de la Federación 2014). The authors also thank David Noakes and two anonymous referees for their excellent suggestions on an earlier version of this manuscript.

Supplementary material

10641_2014_373_MOESM1_ESM.doc (674 kb)
ESM 1 (DOC 674 kb)
10641_2014_373_MOESM2_ESM.txt (2 kb)
ESM 2 (TXT 2.24 kb)


  1. Adams DC, Collyer ML (2007) Analysis of character divergence along environmental gradients and other covariates. Evolution 61:510–515CrossRefPubMedGoogle Scholar
  2. Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:1143–1154CrossRefPubMedGoogle Scholar
  3. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16CrossRefGoogle Scholar
  4. Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24(1):7–14. doi: 10.4404/hystrix-24.1-6283 Google Scholar
  5. Adite A, Winemiller KO (1997) Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience 4:6–23Google Scholar
  6. Aguilar-Medrano R, Frédérich B, de Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613CrossRefGoogle Scholar
  7. Alexander RMCN (1978) Functional design in fishes. Hutchinson University Library, LondonGoogle Scholar
  8. Amezcua F (1996) Peces demersales de la plataforma continental del Pacífico central de México. Instituto de Ciencias del Mar y Limnología. UNAM/CONABIO, MéxicoGoogle Scholar
  9. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  10. Antonucci F, Costa C, Aguzzi J, Cataudella S (2009) Ecomorphology of morpho-functional relationships in the family of Sparidae: a quantitative statistic approach. J Morphol 270:843–855CrossRefPubMedGoogle Scholar
  11. Arif S, Adams DC, Wicknick JA (2007) Bioclimatic modeling, morphology, and behavior reveal alternative mechanisms regulating the distributions of two parapatric salamander species. Evol Ecol Res 9:843–854Google Scholar
  12. Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33:357–424CrossRefGoogle Scholar
  13. Bizarro JJ, Robinson HJ, Rinewalt CS, Ebert DA (2007) Comparative feeding ecology of four sympatric skate species off central California, USA. Environ Biol Fish 80:197–220CrossRefGoogle Scholar
  14. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. Stat Notes BMJ 310:170Google Scholar
  15. Bock WJ (1994) Concepts and methods in ecomorphology. J Biosci 19(4):403–413CrossRefGoogle Scholar
  16. Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299CrossRefGoogle Scholar
  17. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, United StatesGoogle Scholar
  18. Bookstein FL (1997) Landmark methods for forms without landmarks: localizing group differences in outline shape. Med Image Anal 1:225–243CrossRefPubMedGoogle Scholar
  19. Bookstein FL, Schäfer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice DE, Rohlf FJ, Recheis W, Mariam AJ, Marcus LF (1999) Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat Rec (New Anat) 257:217–224CrossRefGoogle Scholar
  20. Brönmark C, Miner JG (1992) Predator-induced phenotypical change in body morphology in crucian carp. Science 258:1348–1350CrossRefPubMedGoogle Scholar
  21. Castro P, Huber ME (2007) Marine Biology. McGraw-Hill, New YorkGoogle Scholar
  22. Cochran-Biederman JL, Winemiller KO (2010) Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environ Biol Fish 88:143–152Google Scholar
  23. Collyer ML, Adams DC (2007) Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–692CrossRefPubMedGoogle Scholar
  24. Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738CrossRefGoogle Scholar
  25. Day T, McPhail JD (1996) The effect of behavioural and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp). Oecologia 108:380–388CrossRefGoogle Scholar
  26. DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford Unievrsity Press, New YorkGoogle Scholar
  27. Dill LM (1974) The escape response of the zebra danio (Brachydanio rerio). I. The stimulus for escape. Anim Behav 22:710–721Google Scholar
  28. Domenici P (2010a) Escape responses in fish: kinematics, performance and behaviour. In: Domenici P, Kapoor BG (eds) Fish locomotion: an eco-ethological perspective. Science Publishers, Enfield, pp 123–170CrossRefGoogle Scholar
  29. Domenici P (2010b) Context-dependent variability in the components of fish escape response: integrating locomotor performance and behaviour. J Exp Zool 313A:59–79CrossRefGoogle Scholar
  30. Ferry LA, Cailliet GM (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In: MacKinlay D, Shearer K (eds) Feeding Ecology and Nutrition in Fish. International Congress of the Biology of Fishes. American Fisheries Society, Bethesda, pp 71–80Google Scholar
  31. Ferry-Graham LA, Gibb AC, Hernandez LA (2008) Premaxillary movements in cyprinodontiform fishes: an unusual protrusion mechanism facilitates “picking” prey capture. Zoology 111:455–466CrossRefPubMedGoogle Scholar
  32. Gibson RN, Ezzi IA (1987) Feeding relationships of a demersal fish assemblage on the west coast of Scotland. J Fish Biol 31: 55–69Google Scholar
  33. Guedes APP, Araújo FG (2008) Trophic resource partitioning among five flatfish species (Actinopterygii, Pleuronectiformes) in a tropical bay in south-eastern Brazil. J Fish Biol 72:1035–1054CrossRefGoogle Scholar
  34. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98CrossRefGoogle Scholar
  35. Kassam DD, Adams DC, Ambali AJD, Yamaoka A (2003) Body shape variation in relation to resource partitioning within cichlid trophic guilds coexisting along the rocky shore of Lake Malawi. Anim Biol 53:59–70CrossRefGoogle Scholar
  36. Labropoulou M, Markakis G (1998) Morphological-dietary relationships within two assemblages of marine demersal fishes. Environ Biol Fish 51:309–319Google Scholar
  37. Lauder GV, Madden PGA (2007) Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids 43:641–653CrossRefGoogle Scholar
  38. Lavin PA, McPhail JD (1985) The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Can J Zool 63:2632–2638CrossRefGoogle Scholar
  39. Legendre P, Legendre L (1998) Numerical ecology: developments in environmental modeling. Elsevier, NetherlandsGoogle Scholar
  40. Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Am Zool 30:209–221Google Scholar
  41. Liem KF (1993) Ecomorphology of the teleostean skull. In: Hanken J, Hall BK (eds) The skull: functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 422–452Google Scholar
  42. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  43. MathWorks (2008) Matlab: The Language of Technical Computing. Versión 7.7
  44. Motta PJ, Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth J Zool 42:400–415CrossRefGoogle Scholar
  45. Motta PJ, Norton SF, Luczkovich JJ (1995a) Perspectives on the ecomorphology of bony fish. Environ Biol Fish 44:11–20CrossRefGoogle Scholar
  46. Motta PJ, Clifton KB, Hernández P, Eggold BT (1995b) Ecomorphological correlates in ten species of subtropical sea grass fishes: diet and microhabitat utilization. Environ Biol Fish 44:37–60CrossRefGoogle Scholar
  47. Nagelkerke LAJ, Sibbing FA, Osse JWM (1995) Morphological divergence during growth in the large barbs (Barbus spp.) of Lake Tana, Ethiopia. Neth J Zool 45:431–454CrossRefGoogle Scholar
  48. Navarro-González JA, Bohórquez-Herrera J, Navia AF, Cruz-Escalona VH (2012) Diet composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico. Cienc Mar 38(2):347–362CrossRefGoogle Scholar
  49. Nelson JS (2006) Fishes of the world. John Wiley and Sons, CanadaGoogle Scholar
  50. Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fish 44:287–304CrossRefGoogle Scholar
  51. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Wagner H (2014) Community Ecology Package “vegan”.
  52. Oliveira EF, Goulart E, Breda L, Minte-Vera CV, de Souza LR, Rizzato M (2010) Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyol 8:569–586Google Scholar
  53. Parsons KJ, Robinson BW (2006) Replicated evolution of integrated plastic responses during early adaptive divergence. Evolution 60(4):801–8013CrossRefPubMedGoogle Scholar
  54. Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia. Ecology 50:1012–1030CrossRefGoogle Scholar
  55. R Development Core Team (2014) R: A language and environment for statistical computing. Versión 3.0.2
  56. Reilly SM, Wainwright PC (1994) Conclusion: ecological morphology and the power of integration. In: Wainwright PC, Reilly SM (eds) Ecological Morphology. University of Chicago Press, Chicago, pp 339–354Google Scholar
  57. Rickefls RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. The University of Chicago Press, United States, pp 13–41Google Scholar
  58. Rohlf FJ (2013a) tpsDig2. Versión 2.17
  59. Rohlf FJ (2013b) tpsRelw, Versión 1.53
  60. Rohlf FJ, Corti M (2000) The use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753CrossRefPubMedGoogle Scholar
  61. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132CrossRefGoogle Scholar
  62. Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  63. Ross ST (1986) Resource partitioning in fish assemblages: a review of filed studies. Copeia 1986(2):352–388CrossRefGoogle Scholar
  64. Rüber L, Adams DC (2001) Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. J Evol Biol 14:325–332CrossRefGoogle Scholar
  65. Ruehl CB, DeWitt TJ (2007) Trophic plasticity and foraging performance in red drum, Sciaenops ocellatus (Linnaeus). J Exp Mar Biol Ecol 349:284–294CrossRefGoogle Scholar
  66. Schoener T (1974) Resource partitioning in ecological communities. Science 185:27–39CrossRefPubMedGoogle Scholar
  67. Sibbing F, Nagelkerke L, Osse J (1994) Ecomorphology as a tool in fisheries: identification and ecotyping of Lake Tana barbs (Barbus intermedius), Ethiopia. Neth J Agric Sci 42:77–85Google Scholar
  68. Smirnov SA, Makeyeva AP, Smirnov AI (1995) Development of ecomorphology of fishes in Russia. Environ Biol Fish 44:23–33CrossRefGoogle Scholar
  69. Smith-Vaniz WF (1995) Carangidae. Jureles, pámpanos, cojinúas, zapateros, cocineros, casabes, macarelas, chicharros, jorobados, medregales, pez pilota. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem V (eds) Guia FAO para Identification de Especies para los Fines de la Pesca. Pacifico Centro-Oriental. FAO, Rome, pp 940–986Google Scholar
  70. Stabel OB, Lwin MS (1997) Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environ Biol Fish 49:145–149Google Scholar
  71. Standen EM, Lauder GV (2007) Hydrodynamic function in dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210:325–339CrossRefPubMedGoogle Scholar
  72. Systat Software Inc (2008) SigmaPlot for Windows Version 11.0
  73. Taper ML, Case TJ (1985) Quantitative genetic models for the coevolution of character displacement. Ecology 66:355–371CrossRefGoogle Scholar
  74. Tripp-Valdez A, Arreguin-Sánchez F (2009) The use of stable isotopes and stomach contents to identify dietary components of the spotted rose snapper, Lutjanus guttatus (Steindachner, 1869), off the eastern coast of the southern Gulf of California. J Fish Aquat Sci 4:274–284CrossRefGoogle Scholar
  75. Tripp-Valdez A, Arreguin-Sánchez F, Zetina-Rejón MJ (2012) The food of Selene peruviana (Actinopterigii: Perciformes: Carangidae) in the southern Gulf of California. Acta Ichthyol Piscat 42(1):1–7CrossRefGoogle Scholar
  76. Tytell ED (2006) Median fin function in bluegill sunfish, Lepomis macrochirus: streamwise vortex structure during steady swimming. J Exp Biol 209:1516–1534CrossRefPubMedGoogle Scholar
  77. Watson DJ, Balon EK (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of Northern Borneo. J Fish Biol 25:371–384CrossRefGoogle Scholar
  78. Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120Google Scholar
  79. Webb PW (1986) Effect if body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Can J Fish Aquat Sci 43:763–771CrossRefGoogle Scholar
  80. Winemiller KO (1991a) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365CrossRefGoogle Scholar
  81. Winemiller KO (1991b) Comparative ecology of Serranochromis species (Teleostei: Cichlidae) in the Upper Zambezi River. J Fish Biol 39:617–639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jimena Bohórquez-Herrera
    • 1
    • 2
  • Víctor H. Cruz-Escalona
    • 3
  • Dean C. Adams
    • 4
  • Mark S. Peterson
    • 5
  1. 1.Laboratorio de Ecología de Pinnípedos “Burney J. Le Boeuf”, Centro Interdisciplinario de Ciencias MarinasInstituto Politécnico NacionalBaja California SurMexico
  2. 2.Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas (SQUALUS)CaliColombia
  3. 3.Centro Interdisciplinario de Ciencias MarinasInstituto Politécnico NacionalBaja California SurMexico
  4. 4.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  5. 5.Department of Coastal SciencesUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations