Skip to main content
Log in

Osmoregulation and growth in offspring of wild Atlantic salmon at different temperatures

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

In order to investigate how changes in gill Na+, K+-ATPase (NKA) α1a, α1b subunits, Na+, K+, 2Cl cotransporter (NKCC1) and the apical cyctic fibrosis trans-membrane conductance regulator (CFTR-I) transcripts in wild Atlantic salmon, Salmo salar, smolts are affected by temperature during spring Atlantic salmon parr (initial mean length 12.8 cm, s.d. = 0.6, mean mass 22.1 g, s.d. = 3.2) originating from the Vosso river (western Norway) were reared under three temperature regimes (5.1, 8.1 and 10.8 °C) from March to May. The temperatures reflect the natural temperature range in the study river during late spring. Findings from the present study indicate that smolt development differs within same strains held at different temperatures. Hence an absolute lower temperature limit for smolt development in wild salmon may be difficult to define. Overall present findings indicate that the smolt window will be narrower in warmer water. A temperature controlled smolt window may signify serious implications for smolt survival in wild (i.e., if migrants are delayed by obstacles or if hatchery produced smolts are released to late).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aas-Hansen Ø, Johnsen HK, Vijayan MM, Jørgensen EH (2003) Development of seawater tolerance and concurrent hormonal changes in fed and fasted Arctic charr at two temperature regimes. Aquaculture 222:135–148

    Article  CAS  Google Scholar 

  • Ágústsson T, Sundell K, Sakamoto T, Ando M, Björnsson BT (2003) Pituitary gene expression of somatolactin, prolactin, and growth hormone during Atlantic salmon parr-smolt transformation. Aquaculture 222:229–238

    Article  Google Scholar 

  • Austreng E, Storebakken T, Åsgård T (1987) Growth rate estimates for cultured Atlantic salmon and rainbow trout. Aquaculture 60:157–160

    Article  Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+-ATPase α -subunit isoforms α -1a and α -1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P (1993) A reagent for the single‐step simultaneous isolaon of RNA, DNA and proteins from cell and tissue samples. Bio Tech 15:532‐537

    Google Scholar 

  • Diesen Hosfeld C, Hammer J, Handeland SO, Fivelstad S, Stefansson SO (2009) Effects of fish density on growth and smoltification in intensive production of Atlantic salmon (Salmo salar L.). Aquaculture 294:236–241

    Article  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Handeland SO, Wilkinsson E, Sveinsbø B, McCormick SD, Stefansson SO (2004) Temperature influence the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon (Salmo salar L.). Aquaculture 233:513–529

    Article  Google Scholar 

  • Harrenstien LA, Tornquist SJ, Miller-Morgan TJ, Fodness BG, Clifford KE (2005) Evaluation of a point-of-care blood analyzer and determination of reference ranges for blood parameters in rockfish. J Am Vet Med Assoc 226:255–265

    Article  PubMed  Google Scholar 

  • Hvidsten NA, Jensen AJ, Vivås H, Bakke Ø, Heggberget TG (1995) Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social interactions. Nor J Freshw Res 70:38–48

    Google Scholar 

  • Jonsson B, Ruud-Hansen J (1984) Water temperature as the primary influence on timing of seaward migrations of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 42:593–595

    Article  Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurements of Na+, K+ -ATPase activity. Can J Fish Aqua Sci 50:656–658

    Article  CAS  Google Scholar 

  • McCormick SD, Saunders RL (1987) Preparatory physiological adaptations for marine life of salmonids: osmoregulation, growth, and metabolism. Am Fish Soc Symp 1:211–229

    Google Scholar 

  • McCormick SD, Saunders RL, Henderson EB, Harmon PR (1987) Photoperiod control of parr-smolt transformation in Atlantic salmon (Salmo salar): changes in salinity tolerance, gill Na+, K+ -ATPase activity and plasma thyroid hormones. Can J Fish Aquat Sci 44:1462–1468

    Article  CAS  Google Scholar 

  • McCormick SD, Cunjak RA, Dempson B, O’Dea MF, Carey JB (1999) Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 56:1649–1658

    Google Scholar 

  • McCormick SD, Moriyama S, Björnsson BT (2000) Low temperature limits photoperiod control of smolting in Atlantic salmon through endocrine mechanisms. Am J Physiol 78:R1352–R1361

    Google Scholar 

  • McCormick SD, Shrimpton JM, Moriyama S, Björnsson BT (2002) Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon. J Exp Biol 205:3553–3560

    PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K + −ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Madsen SS, McCormick SD, Andersson E, Björnsson BT, Prunet P, Stefansson SO (2007) Differential expression of gill Na+, K+ -ATPase α- and β-subunits, Na+, K+,2Cl– cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Kiilerich P, Björnsson BT, Madsen SS, McCormick S, Stefansson SO (2008) Endocrine system in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation. Gen Comp Endocr 155:762–772

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Kverneland OG, Kroglund F, Finstad B, Stefansson SO (2010) Effects of acidic water and aluminium exposure on gill Na+, K + ATPase— α subunit isoforms, enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.). Aquat Tox 97:250–259

    Article  CAS  Google Scholar 

  • Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of quantitative PCR. International University Line, La Jolla, pp 1–23

    Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α -isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  CAS  PubMed  Google Scholar 

  • Scheffé H (1959) The analysis of variance. Wiley, New York, 477 pp

    Google Scholar 

  • Shrimpton JM, McCormick SD (2003) Environmental and endocrine control of gill corticosteroid receptor number and affinity in Atlantic salmon (Salmo salar) during smolting. Aquaculture 222:83–99

    Article  CAS  Google Scholar 

  • Shrimpton JM, Björnsson BT, McCormick SD (2000) Can Atlantic salmon smolt twice? Endocrine and biochemical changes during smolting. Can J Fish Aquat Sci 57:1969–1976

    Article  CAS  Google Scholar 

  • Sower ST, Fawcett RS (1991) Changes in gill Na+, K + −ATPase, thyroxine and triiodothyronine of coho salmon held in two different rearing densities during smoltification. Comp Biochem Physiol 99:85–89

    Article  Google Scholar 

  • Stefansson SO, Berge ÅI, Gunnarsson GS (1998) Changes in seawater tolerance and gill Na+, K+ −ATPase activity during desmoltification in Atlantic salmon kept in freshwater at different temperatures. Aquaculture 168:271–277

    Article  CAS  Google Scholar 

  • Stefansson SO, Björnsson BT, Ebbesson LOE, McCormick SD (2008) Smoltification. In: Finn RN, Kapoor BG (eds) Fish larval physiology. Science Publishers, Enfield, pp 639–681

    Google Scholar 

  • Stefansson SO, Haugland M, Björnsson BT, McCormick SD, Holm M, Ebbesson LOE, Holst JC, Nilsen TO (2012) Growth, osmoregulation and endocrine changes in wild Atlantic salmon post-smolts during marine migration. Aquaculture 362:127–136

    Article  Google Scholar 

  • Strand JET, Davidsen JG, Jørgensen EH, Rikardsen AH (2011) Seaward migrating Atlantic salmon smolts with low levels of gill Na+, K + −ATPase activity; is sea entry delayed? Env Biol Fish 90:317–321

    Article  Google Scholar 

  • Teien HC, Kroglund F, Salbu B, Rosseland BO (2006) Gill reactivity of aluminium-species following liming. Sci Tot Env 58:206–220

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, New Jersey, 718 pp

    Google Scholar 

Download references

Acknowledgments

We thank the staff at ILAB for their assistance during this experiment. This study was financed by grant from the Norwegian Research Council. The experiment described has been approved by the local responsible laboratory animal science specialist under the surveillance of the Norwegian Animal Research Authority (NARA). The experiment was conducted in accordance with the laws and regulations controlling experiments in live animals on Norway, i.e. the Animal Protection Act of 20 December 1974, No. 73, chapter VI sections 20–22 and the Animal Protection Ordinance concerning Biological Experiments in Animals of 15 January 1996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert K. Imsland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handeland, S.O., Imsland, A.K., Ebbesson, L.O.E. et al. Osmoregulation and growth in offspring of wild Atlantic salmon at different temperatures. Environ Biol Fish 97, 285–296 (2014). https://doi.org/10.1007/s10641-013-0151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-013-0151-5

Keywords

Navigation