Skip to main content
Log in

Mitochondrial DNA sequence variation in whiting Merlangius merlangus in the North East Atlantic

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Genetic variation in whiting Merlangius merlangus was examined using a 621 base pair fragment of the cytochrome c oxidase subunit I mitochondrial gene in 138 individuals sampled from Iceland, Norway and the North Sea. In total 10 segregating sites were observed defining 12 haplotypes. Three of the haplotypes were found at high frequencies (>5 %). All but one mutations were synonymous and the nonsynonymous mutation was found as a singleton. This suggests weak or no natural selection acting on the observed polymorphism making it useful for examination of population breeding structure. The genetic variation suggests that the whiting population has undergone sudden expansion in the past, estimated to have started 70 Kyr ago, during the last glacial period. Spatial genetic analysis reveals genetic uniformity across long geographic distances suggesting high level of gene flow. The long pelagic phase at early age, allowing for high dispersal rate, may partly explain the observed pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Andersen KK, Azuma N, Barnola JM et al (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Article  PubMed  CAS  Google Scholar 

  • Árnason E (2004) Mitochondrial cytochrome b DNA variation in the high-fecundity Atlantic cod: trans-Atlantic clines and shallow gene genealogy. Genetics 166:1871–1885

    Article  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Walker D (1998) Pleistocene phylogeographic effects on avian populations and the speciation process. Proc R Soc B 265:457–463

    Article  PubMed  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Beaumont M, Nichols R (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Article  Google Scholar 

  • Bernatchez L, Dodson JJ (1991) Phylogeographic structure in mitochondrial DNA of lake whitefish (Coregonus clupeaformis) and its relation to Pleistocene glaciation. Evolution 45:1016–1035

    Article  Google Scholar 

  • Bigg GR, Cunningham CW, Ottersen G, Pogson GH, Wadley MR, Williamson P (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proc R Soc B 275:163–172

    Article  PubMed  Google Scholar 

  • Carr SM, Marshall HD (2008) Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the ”codmother”, transatlantic vicariance and midglacial population expansion. Genetics 180:381–389

    Article  PubMed  Google Scholar 

  • Charrier G, Coombs SH, McQuinn IH, Laroche J (2007) Genetic structure of whiting Merlangius merlangus in the northeast Atlantic and adjacent waters. Mar Ecol Prog Ser 330:201–211

    Article  Google Scholar 

  • Cohen D, Inada T, Iwamoto T, Scialabba N (1990) Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fisheries Synopsis. No. 125, Vol. 10. Rome

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO WIN: two graphic tools for sequence alignment and molecular phylogeny. CABIOS 12:543–548

    PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (2006) Principles of population genetics, 4th edn. Sinauer Associates, Inc Publishers, Sunderland

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hislop JRG (1984) A comparison of reproductive tactics and strategies of cod, haddock, whiting and Norway pout in the North Sea. In: Potts GW, Wootton RJ (eds) Fish reproduction: Strategies and tactics. Academic, London, pp 311–328

    Google Scholar 

  • Hislop JRG, MacKenzie K (1976) Population studies of the whiting Merlangius merlangus (L.) of the northern North Sea. J Cons int Explor Mer 37:98–110

    Google Scholar 

  • Jónsson G (1992) Íslenskir fiskar (in Icelandic). Fjölvaútgáfan, Reykjavík

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Lu ZC, Gao TX, Yanagimoto T, Sakurai Y (2010) Remarkably low mtDNA control-region diversity and shallow population structure in Pacific cod Gadus macrocephalus. J Fish Biol 77:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Meldrup D (2006) Evidence of microsatellite hitchhiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms. Mol Ecol 15:3219–3229

    Article  PubMed  CAS  Google Scholar 

  • Pálsson S, Källman T, Paulsen J, Árnason E (2009) An assessment of mitochondrial variation in Arctic gadoids. Polar Biol 32:471–479

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Pilcher MW, Whitfield PJ, Riley JD (1989) Seasonal and regional infestation characteristic of three ectoparasites of whiting, Merlangim merlangus L., in the North Sea. J Fish Biol 35:97–110

    Article  Google Scholar 

  • Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 10:361–395

    Article  Google Scholar 

  • Rico C, Ibrahim KM, Rico I, Hewitt GM (1997) Stock composition in North Atlantic populations of whiting using microsatellite markers. J Fish Biol 51:462–475

    Article  CAS  Google Scholar 

  • Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Roques S, Fox CJ, Villasana MI, Rico C (2006) The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family. Gene 383:12–23

    Article  PubMed  CAS  Google Scholar 

  • Rose GA (2005) On distributional responses of North Atlantic fish to climate change. ICES J Mar Sci 62:1360–1374

    Article  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed  CAS  Google Scholar 

  • Sigurgíslason H, Árnason E (2003) Extent of mitochondrial DNA sequence variation in Atlantic cod from the Faroe Islands: a resolution of gene genealogy. Heredity 91:557–564

    Article  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • ter Hofstede R, Hiddink JG, Rijnsdorp AD (2010) Regional warming changes fish species richness in the eastern North Atlantic ocean. Mar Ecol Prog Ser 414:1–9

    Article  Google Scholar 

  • Walsh P, Metzfer D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55:2455–2469

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Kristján Kristinsson at Icelandic Marine Research Institute (MRI), Remment ter Hofstede at Institute forMarine Resources and Ecosystem Studies (IMARES) in the Netherlands and Jarle Mork at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, for assisting in providing samples for the present project. We are thankful to Snæbjörn Pálsson for useful discussions during this work and members of the population genetics laboratory at the University of Iceland for help with molecular analysis during the work. We also thank two anonymous reviewers for their comments on the paper.

This project was supported by the Icelandic research fund, the Icelandic research fund for graduate students of The Icelandic Centre for Research and the Icelandic Marine Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guðni Magnús Eiríksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiríksson, G.M., Árnason, E. Mitochondrial DNA sequence variation in whiting Merlangius merlangus in the North East Atlantic. Environ Biol Fish 97, 103–110 (2014). https://doi.org/10.1007/s10641-013-0143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-013-0143-5

Keywords

Navigation