Genetic structure of the white croaker, Micropogonias furnieri Desmarest 1823 (Perciformes: Sciaenidae) along Uruguayan coasts: contrasting marine, estuarine, and lacustrine populations

  • Alejandro D’Anatro
  • Alfredo N. Pereira
  • Enrique P. Lessa


Micropogonias furnieri is widely distributed in the southwestern Atlantic Ocean. In Uruguay, Laguna de Rocha and Río de La Plata estuary have been reported as reproductive and nursery areas. In Laguna de Rocha, individuals reach maturity at smaller total length than their oceanic counterparts. It has been difficult to establish whether Laguna de Rocha represents a biologically distinct population or simply ecophenotypic variation. More generally, the possible presence of several distinct populations of white croakers in Uruguayan waters has been hypothesized, but limited data exist to substantiate them. A recent mitochondrial DNA analysis suggested divergence between the Río de La Plata and the Oceanic front populations. Using seven microsatellites loci, we studied the population structure of M. furnieri in the nursery areas suggested by the literature, as well as in three additional localities to test these hypotheses. The individuals of Laguna de Rocha showed a moderate genetic differentiation with respect to some of the other populations surveyed. Specimens of Montevideo showed the higher genetic distinctiveness. Given the apparent absence of geographical barriers, other factors may be responsible for the observed differentiation. The complex pattern of forces interacting in this system makes it difficult to disentangle the causes of the population structure found. The adaptation to local environmental conditions could be playing an important role in population differentiation, as well as the possible selective pressures imposed by fisheries. The results obtained in this work offer clues about the processes responsible for differentiation of fishes in estuarine and marine environments.


Estuarine differentiation Microsatellites Population genetics Size reduction in fishes 



We thank to Carla Rivera and Matías Feijoo for the assistance during the fieldwork. We also thank to four anonymous reviewers for their helpful comments in previous version of this manuscript. Part of this work was carried out by using the resources of the Computational Biology Service Unit from Cornell University which is partially funded by Microsoft Corporation. Financial support for was received from PEDECIBA, CSIC, PDT and ANII (Uruguay).


  1. Acuña A, Verocai J, Marquéz J (1992) Aspectos biológicos de Micropogoniasfurnieri (Desmarest 1823) durante dos zafras en una pesquería artesanal al oeste de Montevideo. Rev Biol Mar 27:113–132Google Scholar
  2. Allendorf F (2007) Units of conservation. In: Allendorf F, Luikart G (eds) Conservation and the genetics of populations. Wiley-Blackwell, Malden, USA, pp 380–420Google Scholar
  3. Alvárez R, Pomares O (1997) Aspectos biológicos del roncador Micropogonias furnieri en el golfo de Venezuela. Zootec Trop 15:191–208Google Scholar
  4. Arena G, Rey M (2003) Captura máxima sostenible de la Corvina (Micropogonias furnieri) explotada en el Río de la Plata y la zona común de pesca (período1986-2002). Informe Técnico, DINARAGoogle Scholar
  5. Barton N, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415PubMedCrossRefGoogle Scholar
  6. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345PubMedCrossRefGoogle Scholar
  7. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568PubMedCrossRefGoogle Scholar
  8. Beheregaray L, Levy J (2000) Population genetics of the silverside Odontesthes argentinensis (Teleostei, Atherinopsidae), evidence for speciation in an estuary of southern Brazil. Copeia 2000:441–447CrossRefGoogle Scholar
  9. Beheregaray L, Sunnucks P (2001) Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside Odontesthes argentinensis. Mol Ecol 10:2849–2866PubMedCrossRefGoogle Scholar
  10. Beheregaray L, Sunnucks P, Briscoe D (2002) A rapid fish radiation associated with the last sea level changes in southern Brazil, the silverside Odontesthes perugiae complex. Proc R Soc Lond B 269:65–73CrossRefGoogle Scholar
  11. Berois N, Bolatto C, Brauer M, Barros C (2004) Gametogenesis, histological gonadal cycle and in vitro fertilization in the whitemouth croaker (Micropogonias furnieri, Desmarest, 1823). J Appl Ichthyol 20:169–175CrossRefGoogle Scholar
  12. Bonferroni C (1936) Teoria statistica delle classi e calcolo delle probabilit. Publicación del R. Istit Sup Sci Econ Commerc Firenze 8:3–62Google Scholar
  13. Browman H (2000) ‘Evolution’ of fisheries science. Mar Ecol Prog Ser Theme Sect 208:299–313CrossRefGoogle Scholar
  14. Castello J (1986) Distribuición, crescimiento y maduración sexual de la corvina juvenil (Micropogonias furnieri) en el estuario de la “Lagoa dos Patos”, Brasil. Physis 44:21–36Google Scholar
  15. Cavalloto J (2003) Late Cenozoic sea level highstands in the coastal plain of the la Plata river. GI2S Coast. Res Publ 4:57–59Google Scholar
  16. Cavallotto J (2002) Evolución holocena de la llanura costera del margen sur del Río de la Plata. Rev Asoc Geol Argent 57:376–388Google Scholar
  17. Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  18. Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2201PubMedGoogle Scholar
  19. Cotrina C (1986) Estudios biológicos sobre peces costeros con datos de dos campañas de investigación realizadas en 1981. II. La corvina rubia Micropogonias furnieri. Publ Com Téc Mix Fr Mar 1:8–14Google Scholar
  20. D’Elía G, Lessa E, Cook J (1998) Geographic structure, gene flow and maintenance of melanism in Ctenomys rionegrensis (Rodentia, Octodontidae). Z Säugetierkd 63:285–296Google Scholar
  21. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38Google Scholar
  22. Di Rienzo A, Peterson A, Garza J, Valdes A, Slatkin M, Freimer N (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCrossRefGoogle Scholar
  23. DINARA (2003) Informe sectorial pesquero 2001-2002. DINARA, Montevideo, Uruguay, 63 pp.Google Scholar
  24. Ernande B, Dieckmann U, Heino M (2003) Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc R Soc Lond 271:415–423CrossRefGoogle Scholar
  25. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  26. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0, An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  27. Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data, linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  28. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data, dominant markers and null alleles. Mol Ecol Notes 7:574–578.PubMedCrossRefGoogle Scholar
  29. Faubet P, Gaggiotti E (2008) A new bayesian Method to identify the environmental factors that tnfluence recent migration. Genetics 178:1491–1504CrossRefGoogle Scholar
  30. Figueroa D, Díaz de Astarloa J (1991) Análisis de los caracteres morfométricos y merísticos de la corvina rubia (Micropogonias furnieri) entre los 33°S y 40°S (Pisces, Sciaenidae). Atlântica 13:8–14Google Scholar
  31. Foll M, Gaggiotti E (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891PubMedCrossRefGoogle Scholar
  32. Gaggiotti O, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520PubMedCrossRefGoogle Scholar
  33. Galli O (2001) Estudio comparado de los caracteres morfométricos y merísticos de la corvina (Micropogonias furnieri) en aguas uruguayas. In: Vizziano D, Puig P, Mesones C, Nagy G (eds) El Río de La Plata. Investigación para la gestión de su ambiente, los recursos pesqueros y la pesquería en el frente salino. ECOPLATA, Montevideo, pp 165–172Google Scholar
  34. García-Rodríguez F, Del Puerto L, Castiñeira C, Inda H, Bracco R, Sprechmann P, Scharf B (2001) Preliminary paleolimnological study of Rocha Lagoon, SE Uruguay. Limnologica 31:221–228Google Scholar
  35. García-Rodríguez F, Castiñeira C, Scharf B, Sprechmann P (2002) The relationship between trophic states and sea level variation in the Rocha Lagoon, Uruguay. Neues Jb Geol Paläontol Monatsh 1:27–47Google Scholar
  36. Gold J, Richardson L (1991) Genetic studies in marine fishes. IV. An analysis of population structure in the red drum (Sciaenops ocellatus) using mitochondrial DNA. Fish Res 12:213–241CrossRefGoogle Scholar
  37. Gold J, Richardson L (1994) Genetic distinctness of red drum (Sciaenops ocellatus) from Mosquito Lagoon, east-central Florida. Fish Bull 92:58–66Google Scholar
  38. Guo S, Thompson E (1992) Performing the exact test for Hardy Weinberg Proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  39. Haimovici M, Gatto R (1996) Variaciones estacionales en la estructura poblacional del efectivo pesquero de corvina blanca Micropogonias furnieri (Desmarest, 1823) en el extremo sur de Brasil. Atlântica 18:179–203Google Scholar
  40. Haimovici M, Pereira S, Vieira P (1989) La pesca demersal en el sur de Brasil en el período 1975–1985. Frente Marít 5:151–163Google Scholar
  41. Hardy O, Vekemans X (2002) SPAGeDi, a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  42. Hardy O, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes, a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedGoogle Scholar
  43. Hutchings J (2004) The cod that got away. Nature 428:499–500CrossRefGoogle Scholar
  44. Isaac V (1988) Synopsis of biological data on the whitemouth croaker Micropogonias furnieri (Desmarest, 1823). In: FAO Fisheries Synopsis FAO 150Google Scholar
  45. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.PubMedCrossRefGoogle Scholar
  46. Jaureguizar J, Bava C, Carroza C, Lasta C (2003) Distribution of whitemouth croaker Micropogonias furnieri in relation to environmental factors at the Río de la Plata estuary, South America. Mar Ecol Prog Ser 255:271–282CrossRefGoogle Scholar
  47. Jaureguizar J, Menni R, Guerrero R, Lasta C (2004) Environmental factors structuring fish communities in the Río de La Plata estuary. Fish Res 66:195–211CrossRefGoogle Scholar
  48. Jaureguizar J, Militelli M, Guerrero R (2008) Distribution of Micropogonias furnieri at different maturity stages along an estuarine gradient and in relation to environmental factors. J Mar Biol Assoc UK 88:175–181CrossRefGoogle Scholar
  49. Johnson DR, Funicelli NA (1991) Spawning of the red drum in Mosquito Lagoon, East-Central Florida. Estuaries 14:74–79.CrossRefGoogle Scholar
  50. Lankford T Jr, Targett T, Gaffney P (1999) Mitochondrial DNA analysis of population structuree in the Atlantic croaker Micropogonias undulatus (Perciformes, Sciaenidae). Fish Bull 97:884–890Google Scholar
  51. Levy J, Maggioni M, Conceiçao M (1998) Close genetic similarity among populations of the white croaker Micropogonias furnieri in the south and south-eastern Brazilian coast. I. Allozyme studies. Fish Res 39:87–94CrossRefGoogle Scholar
  52. Macchi G, Eduardo M, Acha E, Militelli M (2003) Seasonal egg production of whitemouth croaker (Micropogonias furnieri) in the Río de la Plata estuary, Argentina-Uruguay. Fish Bull 101:332–342Google Scholar
  53. Maggioni R, Pereira A, Jerez B, Marins L, Conceiçao M, Levy J (1994) Estudio preliminar de la estructura genética de la corvina Micropogonias furnieri entre Rio Grande (Brasil) y el Rincón (Argentina). Frente Marít 15:127–131Google Scholar
  54. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220.PubMedGoogle Scholar
  55. Miller S, Dikes D, Polesky H (1988) A simple salting out procedure for extracting DNA for human nucleated cells. Nucleic Acids Res 16:215Google Scholar
  56. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  57. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  58. Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genome Res 22:201–204Google Scholar
  59. Olsen E, Heino M, Lilly G, Morgan M, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935PubMedCrossRefGoogle Scholar
  60. Pereira A (1990) Estudio de la variación genética en la corvina blanca Micropogonias furnieri (Desmarest, 1823) del Río de la Plata y su frente oceánico. MSc Thesis PEDECIBA, UruguayGoogle Scholar
  61. Pereira A, Márquez A, Marin M, Marin Y (2009) Genetic evidence of two stocks of the whitemouth croaker Micropogonias furnieri in the Río de la Plata and oceanic front in Uruguay. J Fish Biol 75:321–331PubMedCrossRefGoogle Scholar
  62. Pritchard J, Stephens M, Donelly P (2000) Inference of population structure using multilocus data. Genetics 155:945–959PubMedGoogle Scholar
  63. Puchnik-Legat A, Levy J (2006) Genetic structure of Brazilian populations of white mouth croakers Micropogonias furnieri (Perciformes, Scieanidae). Braz Arch Biol Technol 49:429–439CrossRefGoogle Scholar
  64. Ratner S, Lande R (2001) Demographic and evolutionary responses to selective harvesting in populations with discrete generations. Ecology 82:3093–3104CrossRefGoogle Scholar
  65. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4:137–138.CrossRefGoogle Scholar
  66. Ross S (1988) Age, growth and mortality of the atlantic croaker in north Carolina, with comments on populations dinamics. Trans Am Fish Soc 117:461–473CrossRefGoogle Scholar
  67. Rousset F (1996) Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142:1357–1362PubMedGoogle Scholar
  68. Rousset F, Raymond M (1995) Testing heterozigote excess and deficiency. Genetics 140:1413–1419PubMedGoogle Scholar
  69. Santana O, Fabiano G (1999) Medidas y mecanismos de administración de los recursos de las lagunas costeras del litoral atlántico del Uruguay (Lagunas José Ignacio, Garzón, de Rocha y de Castillos). In: Rey M, Amestoy F, Arena G (eds) Plan de Investigación Pesquera INAPE–PNUD URU/92/003Google Scholar
  70. Saona G, Forni F, Vizziano D, Norbis W (2003) Structure by size, sex and maturity stage of the white croaker (Micropogonias furnieri, Desmarest, 1823; Teleostei, Sciaenidae) in the bycatch of the artisanal fishery at Rocha Lagoon, Uruguay. Cienc Mar 29:315–324Google Scholar
  71. Seyoum S, Tringall M, Bert T, McElroy D, Stokes R (2000) An analysis of genetic population structure in red drum, Sciaenops ocellatus, based on mtDNA secuences. Fish Bull 98:127–138Google Scholar
  72. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65CrossRefGoogle Scholar
  73. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  74. Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  75. Slatkin M (1995) A measure of population subdivision based in microsatellites allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  76. Sprechmann P (1978) The paleoecology and paleogeography of the Uruguayan coastal area during the neogene and quaternary. Zitteliana 4:3–72Google Scholar
  77. Stenseth N, Rouyer T (2008) Destabilized fish stocks. Nature 452:825–826.PubMedCrossRefGoogle Scholar
  78. Stockwell C, Hendry A, Kinnison M (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101CrossRefGoogle Scholar
  79. Streelman J, Kocher T (2002) Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics 9:1–4PubMedGoogle Scholar
  80. Turner T, Richardson L, Gold J (1998) Polimorfic microsatellite DNA markers in red drum (Sciaenops ocellatus). Mol Ecol 7:1771–1773PubMedCrossRefGoogle Scholar
  81. van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Micro-checker. Software for identifying and correcting errors in microsatellites data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  82. Vasconcellos M, Haimovici M (2006) Status of white croacker Micropogonias furnieri exploited in southern Brazil according to alternative hypothesis of stock discreetenes. Fish Res 80:196–202CrossRefGoogle Scholar
  83. Vazzoler A (1971) Diversificaçao fisiológica e morfológica de Micropogonias furnieri (Desmarest, 1823) ao sul de Cabo Frío, Brasil. Bol Inst Oceanogr 20:1–70Google Scholar
  84. Vazzoler A (1991) Síntese de conhecimientos sobe a biología da corvina, Micropogonias furnieri (Desmarest, 1823), da costa do Brasil. Atlântica 13:55–74Google Scholar
  85. Vizziano D, Forni F, Saona G, Norbis W (2002) Reproduction of Micropogonias furnieri in a shallow temperate coastal lagoon in southern Atlantic. J Fish Biol 61:196–206CrossRefGoogle Scholar
  86. Waples R (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the endangered species. Act Mar Fish Rev 53:11–22Google Scholar
  87. Weir B (1996) Genetic data analysis II. Sinauer, SunderlandGoogle Scholar
  88. White C, Selkoe K, Watson J, Siegel D, Zacherl D, Toonen R (2010) Ocean currents help explain population genetic structure. Proc R Soc B 277:1685–1694PubMedCrossRefGoogle Scholar
  89. Wlasiuk G, Garza J, Lessa E (2003) Genetic and geographic differentiation in the Río Negro Tuco-Tucos (Ctenomys rionegrensis), inferring the roles of migration and drift from multiple genetic markers. Evolution 57:913–926PubMedGoogle Scholar
  90. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar
  91. Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, USAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alejandro D’Anatro
    • 1
  • Alfredo N. Pereira
    • 2
  • Enrique P. Lessa
    • 1
  1. 1.Departamento de Ecología y Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Dirección Nacional de Recursos Acuáticos (DINARA), Ministerio de Ganadería Agricultura y Pesca (MGAP)MontevideoUruguay

Personalised recommendations