Advertisement

Environmental Biology of Fishes

, Volume 74, Issue 2, pp 201–208 | Cite as

Do Movement Patterns Differ Between Laboratory and Field Suction Feeding Behaviors in a Mexican Cichlid?

  • Brook O. Swanson
  • Alice C. Gibb
  • Jane C. Marks
  • Dean A. Hendrickson
Article

Synopsis

We analyzed feeding behavior of individuals of Herichthys minckleyi, the Cuatro Ciénegas cichlid, under laboratory conditions and freely behaving in their natural environment using high-speed video imaging. In a multivariate analysis of suction feeding behaviors there was no clear grouping of feeding events based on the environment, which suggests that most of the variability in the data was unrelated to differences between lab and field behaviors. In fact, the variability within an environment was far greater than the variability between the two environments. These results suggest that laboratory studies can accurately describe the kinematics of behaviors seen in the field. However, although lab based studies can quantify behaviors seen in the field, natural habitats are complex and provide individuals with the opportunity to exploit a wide range of food types and microhabitats, which may elicit behaviors not observed in the laboratory. However, feeding behaviors observed in the lab are representative of frequently used feeding behaviors in the field, at least for this species. Thus, we suggest that laboratory studies of feeding behavior, particularly those that test biomechanical or performance-based hypotheses can be extrapolated to natural environments.

Keywords

kinematics functional morphology Herichthys minckleyi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, P., Vree, F.D. 1993Feeding performance and muscular constraints in fishJ. Exp. Biol.177129147Google Scholar
  2. Alexander, R.M. 1967The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fishJ. Zool.1514364Google Scholar
  3. Altmann, J. 1974Observational study of behavior: sampling methodsBehavior48227265Google Scholar
  4. Barlow, G.W. 1968Ethological units of behaviorIngle, D. eds. The Central Nervous System and Fish BehaviorUniversity of Chicago PressChicago217232Google Scholar
  5. Carreño, C.A. & K.C. Nishikawa. 2004. Does Xenopus laevis use suction for prey capture? Integr. Comp. Biol. 44.Google Scholar
  6. Ehlinger, T.J. 1990Habitat choice and phenotype-limited feeding efficiency in Bluegill: Individual differences and trophic polymorphismEcology71886896Google Scholar
  7. Ferry-Graham, L.A., Wainwright, P.C., Westneat, M.W., Bellwood, D.R. 2001Modulation of Prey Capture Kinematics in the Cheeklined Wrasse Oxycheilinus digrammus (Teleostei: Labridae)J. Exp. Zool.29088100CrossRefPubMedGoogle Scholar
  8. Grubuch, J.R., Wainwright, P.C. 1997Motor basis of suction feeding performance in Largemouth Bass, Micropterus salmoidesJ. Exp. Zool.277113CrossRefGoogle Scholar
  9. Huskey, S.H. 2004. Modulation of prey-capture kinematics in large-mouth bass, Micropterus spp Integr. Comp. Biol. 44.Google Scholar
  10. Kornfield, I. & J.N. Taylor. 1983. A new species of polymorphic fish, Cichlasoma minckleyi, from Cuatro Ciénegas, Mexico (Teleostei: Cichlidae). Proceedings of the Biological Society of Washington. Washington DC 96: 253 – 269.Google Scholar
  11. Lauder, G.V., Liem, K.F. 1983The evolution and interrelationships of the actinopterygian fishesBull. Museum Comp. Zool.15095197Google Scholar
  12. Lauder, G.V., Reilly, S.M. 1996The mechanistic bases of behavioral evolution: A multivariate analysis of musculoskeletal functionMartins, E.P. eds. Phylogenies and the Comparative Method in Animal BehaviorOxford University PressNew York104137Google Scholar
  13. Lemell, P., Lemell, C., Snelderwaard, P., Gumpenberger, M., Wocheslander, R., Weisgram, J. 2002Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae)J. Exp. Biol.20514951506PubMedGoogle Scholar
  14. Liem, K.F. 1979Modulatory multiplicity in the feeding mechanism in cichlid fishes, as exemplified by the invertebrate pickers of Lake TanganyikaJ. Zool., London18993125Google Scholar
  15. Liem, K.F. 1980Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishesAm. Zool.20295314Google Scholar
  16. Liem, K.F., Kaufman, L.S. 1984Intraspecific macroevolution: Functional biology of the polymorphic cichlid species Cichlasoma minckleyiKornfield, I. eds. Evolution of Species FlocksUniversity of Maine at Orono PressOrono, Maine203215Google Scholar
  17. Liem, K., Osse, J. 1975Biological versatility, evolution, and food resource exploitation in African cichlid fishesAm. Zool.15427454Google Scholar
  18. Liem, K.F., Summers, A.P. 2000Integration of versatile functional design, population ecology, ontogeny and phylogenyNetherlands J. Zool.50245259CrossRefGoogle Scholar
  19. Meyer, A. 1989Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellumOecologia80431436CrossRefGoogle Scholar
  20. Munday, P.L., Wilson, S.K. 1997Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fishJ. Fish Biol.51931938Google Scholar
  21. Schmitt, R.J., Coyer, J.A. 1982The foraging ecology of sympatric marine fish in the genus Embiotoca (Emdiotocidae): Importance of foraging behavior in prey size selectionOecologia55369378CrossRefGoogle Scholar
  22. Sih, A., Bell, A.M., Johnson, J.C., Ziemba, R.E. 2004Behavioral syndromes: an integrative overviewQuart. Rev. Biol.79241274CrossRefPubMedGoogle Scholar
  23. Smith, D.C. 1982. Trophic ecology of the cichlid morphs of Cuatro Ciénegas, Mexico. unpublished M.S. thesis, University of Maine at Orono, Orono.Google Scholar
  24. Swanson, B.O., Gibb, A.C., Marks, J.C., Hendrickson, D.A. 2003Trophic polymorphism and behavioral differences decrease intra-specific competition in a cichlid, Herichthys minckleyiEcology8414411446Google Scholar
  25. Tinbergen N. 1942. An objectivistic study of the innate behaviour of animals. Bibliotheca Biotheoretica: 39 – 98.Google Scholar
  26. Turingan, R.G. and Wainwright, P.C. 1993. Morphological and functional bases of durophagy in the Queen triggerfish, Balistes vetula (Pisces, Tetraodontiformes). J. Morph. 215: 101–118.Google Scholar
  27. Wainwright, P.C., Ferry-Graham, L.A., Waltzek, T.B., Carroll, A.M., Hulsey, C.D., Grubich, J.R. 2001Evaluating the use of ram and suction during prey capture by cichlid fishesJ. Exp. Biol.20430393051PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Brook O. Swanson
    • 1
    • 3
  • Alice C. Gibb
    • 1
  • Jane C. Marks
    • 1
  • Dean A. Hendrickson
    • 2
  1. 1.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.Section of Integrative BiologyUniversity of TexasAustinUSA
  3. 3.Department of BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations