Skip to main content

Advertisement

Log in

A Dynamic Game of Emissions Pollution with Uncertainty and Learning

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

We introduce learning in a dynamic game of international pollution, with ecological uncertainty. We characterize and compare the feedback non-cooperative emissions strategies of players when the players do not know the distribution of ecological uncertainty but they gain information (learn) about it. We then compare our learning model with the benchmark model of full information, where players know the distribution of ecological uncertainty. We find that uncertainty due to anticipative learning induces a decrease in total emissions, but not necessarily in individual emissions. Further, the effect of structural uncertainty on total and individual emissions depends on the beliefs distribution and bias. Moreover, we obtain that if a player’s beliefs change toward more optimistic views or if she feels that the situation is less risky, then she increases her emissions while others react to this change and decrease their emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. For instance, according to the IPCC’s Fifth Assessment Report, “warming of the climate system is unequivocal” (see, IPCC 2013, SPM-12).

  2. Some contributions dealt with the choice of (tax and quota) policies in a context with uncertainty and learning; see, e.g., Kolstad (1996), Ulph and Ulph (1997), Kolstad and Ulph (2011) and Masoudi and Zaccour (2014).

  3. Note that the dynamic maximization of a non-learning player is identical to an adaptive-learning player who at any point in time ignores future learning possibilities when making a decision and then suddenly realizes her mistake and updates the decision. Hence, an adaptive learner is synonymously called a bounded-rational player, or a myopic player. Anticipated utility is another term that is sometimes used for our non-learning case; see, e.g., Cogley and Sargent (2008). This term is adapted from Kreps (1998).

  4. Qualitatively similar results hold when using a normal distribution.

  5. For example in case of learning an individual’s self-induced effect is

    $$\begin{aligned} \frac{2+\left( N-2\right) \gamma }{2+\left( N-1\right) \gamma }\beta _{i}\left( \int _{\Theta }\frac{\mu \left( \theta \right) }{1-\delta d\mu \left( \theta \right) }\xi _{i}^{1}(\theta ){\mathbf {d}}\theta -\int _{\Theta } \frac{\mu \left( \theta \right) }{1-\delta d\mu \left( \theta \right) }\xi _{i}^{2}(\theta ){\mathbf {d}}\theta \right) , \end{aligned}$$

    the outsider effect is

    $$\begin{aligned} \frac{\gamma }{2+\left( N-1\right) \gamma }\sum _{j\ne i}\beta _{j}\left( \int _{\Theta }\frac{\mu \left( \theta \right) }{1-\delta d\mu \left( \theta \right) }\xi _{j}^{1}(\theta ){\mathbf {d}}\theta -\int _{\Theta }\frac{\mu \left( \theta \right) }{1-\delta d\mu \left( \theta \right) }\xi _{j}^{2}(\theta ){\mathbf {d}}\theta \right) . \end{aligned}$$
  6. See Masoudi and Zaccour (2014) for a proof of this statement in the simpler case where uncertainty is only in \(\beta \).

  7. We wish to thank the Reviewer who suggested this extension. The last lines are in his/her own words.

  8. Notice that the second-order condition is satisfied for the model.

References

  • Agbo M (2014) Strategic exploitation with learning and heterogeneous beliefs. J Environ Econ Manag 67(2):126–140

  • Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88(2):312–319

    Article  Google Scholar 

  • Baker E (2005) Uncertainty and learning in a strategic environment: global climate change. Resour Energy Econ 27(1):19–40

    Article  Google Scholar 

  • Benchekroun H, Long NV (1998) Efficiency-inducing taxation for polluting oligopolists. J Public Econ 70(2):325–342

    Article  Google Scholar 

  • Bramoullé Y, Treich N (2009) Can uncertainty alleviate the commons problem? J Eur Econ Assoc 7(5):1042–1067

    Article  Google Scholar 

  • Breton M, Sbragia L (2011) Learning under partial cooperation and uncertainty. Cahier du GERAD G-2011-46

  • Cogley T, Sargent TJ (2008) Anticipated utility and rational expectations as approximations of Bayesian decision making. Int Econ Rev 49(1):185–221

    Article  Google Scholar 

  • de Zeeuw A, Zemel A (2012) Regime shifts and uncertainty in pollution control. J Econ Dyn Control 36(7):939–950

    Article  Google Scholar 

  • Dellink R, Finus M (2012) Uncertainty and climate treaties: Does ignorance pay? Resour Energy Econ 34(4):565–584

    Article  Google Scholar 

  • Dockner EJ, Long NV (1993) International pollution control: cooperative versus noncooperative strategies. J Environ Econ Manag 25(1):13–29

    Article  Google Scholar 

  • Hoel M, Schneider K (1997) Incentives to participate in an international environmental agreement. Environ Resour Econ 9(2):153–170

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Summary for policymakers

  • Jørgensen S, Martín-Herrán G, Zaccour G (2010) Dynamic games in the economics and management of pollution. Environ Model Assess 15(6):433–467

    Article  Google Scholar 

  • Kolstad C, Ulph A (2008) Learning and international environmental agreements. Clim Change 89(1–2):125–141

    Article  Google Scholar 

  • Kolstad C, Ulph A (2011) Uncertainty, learning and heterogeneity in international environmental agreements. Environ Resour Econ 50(3):389–403

    Article  Google Scholar 

  • Kolstad C (1996) Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J Environ Econ Manag 31(1):1–18

    Article  Google Scholar 

  • Kolstad C (2007) Systematic uncertainty in self-enforcing international environmental agreements. J Environ Econ Manag 53(1):68–79

    Article  Google Scholar 

  • Koulovatianos C, Mirman LJ, Santugini M (2009) Optimal growth and uncertainty: learning. J Econ Theory 144(1):280–295

    Article  Google Scholar 

  • Kreps D (1998) Anticipated utility and dynamic choice. In: Jacobs DP, Kalai E, Kamien M (eds) Frontiers of research in economic theory. Cambridge University Press, Cambridge, pp 24–274

    Google Scholar 

  • Long NV (1992) Pollution control: a differential game approach. Ann Oper Res 37(1):283–296

    Article  Google Scholar 

  • Masoudi N, Zaccour G (2014) Emissions control policies under uncertainty and rational learning in a linear-state dynamic model. Automatica 50(3):719–726

    Article  Google Scholar 

  • Mirman LJ, Santugini M (2014) Learning and technological progress in dynamic games. Dyn Games Appl 4(1):58–72

    Article  Google Scholar 

  • Pindyck RS (2000) Irreversibilities and the timing of environmental policy. Resour Energy Econ 22(3):13–159

    Article  Google Scholar 

  • Pindyck RS (2007) Uncertainty in environmental economics. Rev Environ Econ Policy 1(1):45–65

    Article  Google Scholar 

  • Pindyck RS (2012) Uncertain outcomes and climate change policy. J Environ Econ Manag 63(3):289–303

    Article  Google Scholar 

  • Ulph A, Maddison D (1997) Uncertainty, learning and international environmental policy coordination. Environ Resour Econ 9(4):451–466

    Google Scholar 

  • Ulph A, Ulph D (1997) Global warming, irreversibility and learning. Econ J 107(442):636–650

    Article  Google Scholar 

  • Van der Ploeg F, de Zeeuw A (1992) International aspects of pollution control. Environ Resour Econ 2(2):117–139

    Article  Google Scholar 

  • Yeung DWK, Petrosyan LA (2008) A cooperative stochastic differential game of transboundary industrial pollution. Automatica 44(6):1532–1544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Zaccour.

Additional information

We would like to thank the Editor and two anonymous Reviewers for their helpful comments.

Appendix

Appendix

1.1 Proof of Proposition 1

Denote by \({v_{i}^{I}}\left( S;\theta ^{*}\right) \) the value function of player \(i\), where the superscript \(I\) refers to an informed player. The Hamilton–Jacobi–Bellman (HJB) equation is given by

$$\begin{aligned} {v_{i}^{I}}\left( S;\theta ^{*}\right)&= \max _{e_{i}}\left\{ e_{i}\left( \alpha _{i}-e_{i}-\gamma \sum _{j\ne i}^{N}e_{j}\right) -\beta _{i}S\right. \nonumber \\&\left. +\,\delta \int _{\mathcal {H}} \left( {v_{i}^{I}}\left( \eta \left( \sum _{j=1}^{N}e_{j}+dS\right) \right) \right) \phi (\eta |\theta ^{*}){\mathbf {d}}\eta \right\} . \end{aligned}$$
(28)

Considering the linear-state structure of our model, we conjecture that the value function is linear and specified as follows:

$$\begin{aligned} {v_{i}^{I}}\left( S;\theta ^{*}\right) ={\kappa _{i,1}^{I}}S+\kappa _{i,2}^{I}. \end{aligned}$$

Plugging the conjectured value function in (50), we obtain

$$\begin{aligned} {\kappa _{i,1}^{I}}S+\kappa _{i,2}^{I}&= \max _{e_{i}}\left\{ e_{i}\left( \alpha _{i}-e_{i}-\gamma \sum _{j\ne i}^{N}e_{j}\right) -\beta _{i}S\right. \nonumber \\&\left. +\,\delta \int _{\mathcal {H}}\left[ {\kappa _{i,1}^{I}}\eta \left( \sum _{j=1}^{N}e_{j}+dS\right) +\kappa _{i,2}^{I} \right] \phi (\eta |\theta ^{*}){\mathbf {d}}\eta \right\} . \end{aligned}$$
(29)

The first-order equilibrium condition is given byFootnote 8

$$\begin{aligned} \alpha _{i}-2e_{i}-\gamma \sum _{j\ne i}e_{j}+\delta \int _{\mathcal {H}} {\kappa _{i,1}^{I}}\eta \phi (\eta |\theta ^{*}){\mathbf {d}}\eta =0. \end{aligned}$$
(30)

To find the coefficients of the value function, we substitute for \({e_{i}^{I}}\) in (29) and equate the coefficients in order of \(S\). This leads to a system of \(2N\) equations (2 equations for each player) and \(2N\) unknowns (\({\kappa _{i,1}^{I}}\) and \(\kappa _{i,2}^{I}\,\forall i=1,2\)), that is,

$$\begin{aligned} {\kappa _{i,1}^{I}}&= -\beta _{i}+\delta (1-d)\int _{\mathcal {H}} \eta {\kappa _{i,1}^{I}}\phi (\eta |\theta ^{*}){\mathbf {d}}\eta , \end{aligned}$$
(31)
$$\begin{aligned} \kappa _{i,2}^{I}&= \alpha _{i}e_{i}-e_{i}^{2}-\gamma e_{i}\sum _{j\ne i}e_{j}+\delta \int _{\mathcal {H}}\left( \eta {\kappa _{i,1}^{I}}\left( \sum _{j=1}^{N}e_{j}^{I}\right) +\kappa _{i,2}^{I}\right) \left( \phi (\eta | \theta ^{*})\right) {\mathbf {d}}\eta . \end{aligned}$$
(32)

Since \(\mu (\theta ^{*})=\int _{\mathcal {H}} \eta \phi (\eta |\theta ^{*}){\mathbf {d}}\eta \), from (31), we get

$$\begin{aligned} {\kappa _{i,1}^{I}}=\frac{-\beta _{i}}{1-\delta d\mu (\theta ^{*})}, \end{aligned}$$
(33)

and from (32)

$$\begin{aligned} {\kappa _{i,2}^{I}}=\frac{1}{1-\delta }\left( \alpha _{i}{e_{i}^{I}} -\left( {e_{i}^{I}}\right) ^{2}-\gamma e_{i}\sum _{j\ne i}e_{j}+ \delta \mu (\theta ^{*}){\kappa _{i,1}^{I}}\left( \sum _{j=1}^{N}e_{j}^{I}\right) \right) . \end{aligned}$$

To solve for \(\left\{ {e_{i}^{I}}\right\} _{i=1}^{N}\) rewrite (30) as a function of total emissions, \(\sum _{j=1}^{N}e_{j}\), i.e.,

$$\begin{aligned} \alpha _{i}-\left( 2-\gamma \right) e_{i}-\gamma \sum _{j=1}^{N}e_{j}+\delta \int _ {\mathcal {H}}{\kappa _{i,1}^{I}}\eta \phi (\eta |\theta ^{*}){\mathbf {d}} \eta =0, \end{aligned}$$
(34)

and consequently, the best reaction function of player \(i\) is

$$\begin{aligned} {e_{i}^{I}}=\frac{1}{2-\gamma }\left( \alpha _{i}-\gamma \sum _{j=1}^{N}e_{j}-\delta \frac{\beta _{i}\mu (\theta ^{*})}{1-\delta d\mu (\theta ^{*})}\right) . \end{aligned}$$
(35)

We first solve for \(\sum _{j=1}^{N}e_{j}\). Summing 35 over \(i\) yields

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{I}}=\frac{1}{2-\gamma }\left( \sum _{i=1}^{N}\alpha _{i}- \gamma N\sum _{j=1}^{N}e_{j}-\delta \frac{\mu (\theta ^{*}) \sum _{i=1}^{N}\beta _{i}}{1-\delta d\mu (\theta ^{*})}\right) . \end{aligned}$$
(36)

So that total emission is

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{I}}=\frac{1}{2+\left( N-1\right) \gamma } \left( \sum _{i=1}^{N}\alpha _{i}-\delta \frac{\mu (\theta ^{*})}{ 1-\delta d\mu (\theta ^{*})}\sum _{i=1}^{N}\beta _{i}\right) . \end{aligned}$$
(37)

Plugging (37) into 35 yields

$$\begin{aligned} {e_{i}^{I}}=\frac{1}{2-\gamma }\left( \alpha _{i}-\frac{\gamma }{ 2+\left( N-1\right) \gamma }\left( \sum _{i=1}^{N}\alpha _{i}-\delta \frac{ \mu (\theta ^{*})}{1-\delta d\mu (\theta ^{*})} \sum _{i=1}^{N}\beta _{i}\right) -\delta \frac{\beta _{i}\mu \left( \theta ^{*} \right) }{1-\delta d\mu (\theta ^{*})}\right) . \end{aligned}$$
(38)

By rearranging we have

$$\begin{aligned} {e_{i}^{I}}=\frac{1}{2-\gamma }\left( \alpha _{i}-\frac{\gamma \sum _{i=1}^{N} \alpha _{i}}{2+\left( N-1\right) \gamma }-\frac{\delta \mu \left( \theta ^{*} \right) }{1-\delta d\mu (\theta ^{*})}\left( \beta _{i}-\frac{ \gamma \sum _{j=i}^{N}\beta _{j}}{2+\left( N-1\right) \gamma }\right) \right) . \end{aligned}$$
(39)

1.2 Proof of Proposition 2

By virtue of our linear-state model we conjecture that the value function of player \(i\) has the linear form of \(v_{i}^{L}={\kappa _{i,1}^{L}}(\xi _{i})S+ {\kappa _{i,2}^{L}}(\xi _{1},\ldots ,\xi _{N})\). Replacing this conjectured \(v_{i}^{L}\) in the HJB equation, we obtain

$$\begin{aligned} {v_{i}^{L}}\left( S,\xi _{1},\ldots ,\xi _{N}\right)&= \max _{e_{i}}\left\{ e_{i}\left( \alpha _{i}-e_{i}-\gamma \sum _{j\ne i}^{N}e_{j}\right) -\beta _{i}S\right. \nonumber \\&+\,\,\delta \int _{\mathcal {H}}{\kappa _{i,1}^{L}}(\hat{\xi } _{i})\eta \left( \sum _{j=1}^{N}e_{j}+dS\right) \left( \int _{\Theta }\phi (\eta | \theta )\xi _{i}(\theta ){\mathbf {d}}\theta \right) {\mathbf {d}}\eta \nonumber \\&+\,\,\left. \delta \int _{\mathcal {H}}\left( \kappa _{i,2}^{L}\left( \hat{ \xi }_{1}\left( \theta |\eta \right) ,\ldots ,\hat{\xi }_{N}\left( \theta |\eta \right) \right) \right) \left( \int _{\Theta }\phi (\eta |\theta )\xi _{i}(\theta ){\mathbf {d}} \theta \right) {\mathbf {d}}\eta \right\} . \nonumber \\ \end{aligned}$$
(40)

From the first-order conditions we have

$$\begin{aligned} \alpha _{i}-2{e_{i}^{L}}-\gamma \sum _{j\ne i}^{N}e_{j}^{L}+ \delta \int _{\mathcal {H}}{\kappa _{i,1}^{L}}({{\hat{\xi }}_{i}} \left( \theta |\eta \right) )\eta \left( \int _{\Theta }\phi (\eta |\theta ) \xi _{i}(\theta ){\mathbf {d}}\theta \right) {\mathbf {d}}\eta . \end{aligned}$$
(41)

Plugging (41) into (40) and equating the coefficients in order of \(S\), we have the following system of equations:

$$\begin{aligned} {\kappa _{i,1}^{L}}(\xi _{i})&= -\beta _{i}+\delta d\int _{\mathcal {H}}{\kappa _{i,1}^{L}}(\hat{\xi _{i}}) \eta \left( \int _{\Theta }\phi (\eta |\theta ) \xi _{i}(\theta ){\mathbf {d}}\theta \right) {\mathbf {d}}\eta \end{aligned}$$
(42)
$$\begin{aligned} {\kappa _{i,2}^{L}}(\xi _{1},\ldots ,\xi _{N})&= \alpha _{i}e_{i}-(e_{i})^{2}-\gamma e_{i}\sum _{j\ne i}^{N}e_{j}\nonumber \\&+\,\delta \int _{\mathcal {H}}\left( {\kappa _{i,1}^{L}}(\hat{ \xi }_{i})\eta \sum _{i}e_{i}+\kappa _{i,2}^{L}\left( \hat{\xi }_{1} \left( \theta |\eta \right) ,\ldots ,\hat{\xi }_{N}\left( \theta |\eta \right) \right) \right) \nonumber \\&\times \,\left( \int _{\Theta }\phi (\eta |\theta )\xi _{i}(\theta ) {\mathbf {d}}\theta \right) {\mathbf {d}}\eta . \end{aligned}$$
(43)

We claim that

$$\begin{aligned} {\kappa _{i,1}^{L}}(\xi _{i})=-\beta _{i}\int _{\Theta } \frac{\xi _{i}(\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta , \end{aligned}$$
(44)

and consequently

$$\begin{aligned} \begin{aligned}\kappa _{i,2}^{L}(\xi _{1},\ldots ,\xi _{N})=&\alpha _{i}e_{i}-(e_{i})^{2}-\gamma e_{i}\sum _{j\ne i}^{N}e_{j}\\&-\beta _{i}\delta \sum _{i}e_{i}\left( \int _{\Theta }\frac{\mu (\theta ) \xi _{i}(\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta \right) \\&+\delta \int _{\mathcal {H}}\kappa _{i,2}^{L}\left( {\hat{ \xi }_{1}}\left( \theta |\eta \right) ,\ldots ,\hat{\xi }_{N} \left( \theta |\eta \right) \right) \left( \int _{\Theta }\phi (\eta |\theta ) \xi _{i}(\theta )d\theta \right) {\mathbf {d}}\eta . \end{aligned} \end{aligned}$$
(45)

To show this, let us update (44) for one period to obtain

$$\begin{aligned} {\kappa _{i,1}^{L}}\left( \hat{\xi }_{i}\left( \theta |\eta \right) \right) =- \beta _{i}\int _{\Theta }\frac{\hat{\xi }_{i}\left( \theta |\eta \right) }{1-\delta d\mu (\theta )}{\mathbf {d}}\theta . \end{aligned}$$
(46)

Using (8), we get

$$\begin{aligned} {\kappa _{i,1}^{L}}(\hat{\xi _{i}}\left( \theta |\eta \right) )=-\beta _{i}\int _{ \Theta }\frac{1}{1-\delta d\mu (\theta )}\frac{\phi (\eta |\theta ) \xi _{i}(\theta )}{\int _{\Theta }\phi (\eta |x)\xi _{i}(x) {\mathbf {d}}x}{\mathbf {d}}\theta . \end{aligned}$$

Plugging this back into (42) leads to

$$\begin{aligned} {\kappa _{i,1}^{L}}(\xi _{i})&= -\beta _{i}\left( 1+\delta d\int _{\mathcal {H}}\int _{\Theta }\frac{1}{1-\delta d\mu (\theta )}\frac{\phi (\eta |\theta )\xi _{i}(\theta )}{\int _{\Theta } \phi (\eta |x)\xi _{i}(x)dx} d\theta \eta \right. \\&\left. \times \left( \int _{\Theta }\phi (\eta |\theta )\xi _{i}(\theta ){\mathbf {d}} \theta \right) {\mathbf {d}}\eta \right) , \\&= -\beta _{i}\left( 1+\delta d\int _{\Theta }\frac{\mu (\theta )}{ 1-\delta d\mu (\theta )}\xi _{i}(\theta ){\mathbf {d}}\theta \right) , \\&= -\beta _{i}\left( \int _{\Theta }\left[ \frac{1-\delta d\mu (\theta )}{1-\delta d\mu (\theta )}+\frac{\delta d\mu (\theta )}{1-\delta d\mu (\theta )}\right] \xi _{i}(\theta ){\mathbf {d}}\theta \right) . \end{aligned}$$

This corresponds to our claim. To solve for \(\left\{ {e_{i}^{I}}\right\} _{i=1}^{N}\)rewrite (41) as a function of total emissions, \(\sum _{j=1}^{N}e_{j}\), i.e.,

$$\begin{aligned} \alpha _{i}-\left( 2-\gamma \right) {e_{i}^{L}}- \gamma \sum _{j=1}^{N}e_{j}^{L}-\delta \beta _{i}\int _{\Theta } \frac{\mu (\theta )\xi _{i}(\theta )}{1-\delta d\mu (\theta )} {\mathbf {d}}\theta . \end{aligned}$$

So, for \(i=1,\ldots ,N\),

$$\begin{aligned} {e_{i}^{L}}=\frac{1}{2-\gamma }\left( \alpha _{i}- \gamma \sum _{j=1}^{N}e_{j}^{L}-\delta \beta _{i}\int _{\Theta } \frac{\mu (\theta )\xi _{i}(\theta )}{1-\delta d\mu (\theta )} {\mathbf {d}}\theta \right) . \end{aligned}$$
(47)

We first solve for \(\left\{ {e_{i}^{L}}\right\} _{i=1}^{N}\), then for \({e_{i}^{L}}\). Summing (47) over \(i\) yields

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{L}}=\frac{1}{2-\gamma }\left( \sum _{i=1}^{N} \alpha _{i}-\gamma N\sum _{j=1}^{N}e_{j}^{L}-\delta \sum _{i=1}^{N} \beta _{i}\int _{\Theta }\frac{\mu (\theta )\xi _{i}(\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta \right) . \end{aligned}$$

So, total emissions is given by

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{L}}=\frac{1}{2+\left( N-1\right) \gamma } \left( \sum _{i=1}^{N}\alpha _{i}-\delta \sum _{i=1}^{N}\beta _{i} \int _{\Theta }\frac{\mu (\theta )\xi _{i}(\theta )}{1-\delta d\mu (\theta )} {\mathbf {d}}\theta \right) . \end{aligned}$$
(48)

Plugging (48) into (47) yields

$$\begin{aligned} {e_{i}^{L}}&= \frac{1}{2-\gamma }\left( \left( \alpha _{i}-\frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right) \right. \nonumber \\&\left. -\,\delta \left( \beta _{i}\int _{\Theta }\frac{\mu (\theta )\xi _{i}(\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta -\frac{\gamma \sum _{j=1}^{N}\beta _{j} \int _{\Theta }\frac{\mu (\theta )\xi _{j}(\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta }{2+\left( N-1\right) \gamma } \right) \right) . \end{aligned}$$
(49)

1.3 Proof of Proposition 3

We follow the same procedure as we did for a learner player. We conjecture that \({v_{i}^{ NL}},\) which satisfies (12), has the linear form \({v_{i}^{ NL}}=\kappa _{i,1}^{ NL}(\xi _{i})S+ {\kappa _{i,2}^{ NL}}(\xi _{1},\ldots ,\xi _{N})\). Rewriting (12) with our conjectured value function we have

$$\begin{aligned} {v_{i}^{ NL}}\left( S,\xi _{1},\ldots ,\xi _{N}\right)&= \max _{e_{i}}\left\{ e_{i}\left( \alpha _{i}-e_{i,t}-\gamma \sum _{j\ne i}^{N}e_{j}\right) -\beta _{i}S\right. \nonumber \\&+\left. \delta \left( \int _{\mathcal {H}}\kappa _{i,1}^{ NL}(\xi _{i}) \eta \left( \sum _{j=1}^{N}e_{j}+dS\right) +\kappa _{i,2}^{ NL}(\xi _{1},\ldots , \xi _{N})\right) \right. \nonumber \\&\left. \times \left( \int _{\Theta }\phi (\eta |\theta )\xi _{i}(\theta ) {\mathbf {d}}\theta \right) {\mathbf {d}}\eta \right\} . \end{aligned}$$
(50)

The first-order condition for \(i\) is

$$\begin{aligned} \alpha _{i}-2{e_{i}^{ NL}}-\gamma \sum _{j\ne i}^{N}e_{j}^{ NL}+ \delta \int _{\mathcal {H}}{\kappa _{i,1}^{ NL}}(\xi _{i})\eta \left( \int _{\Theta }\phi (\eta |\theta )\xi (\theta ){\mathbf {d}} \theta \right) {\mathbf {d}}\eta , \end{aligned}$$
(51)

and since \(\int _{\mathcal {H}}\eta \phi (\eta |\theta ){\mathbf {d}} \eta =\mu (\theta )\), we obtain

$$\begin{aligned} {e_{i}^{ NL}}\left( S,\xi _{1},\ldots ,\xi _{N}\right) =\frac{1}{2} \left( \alpha _{i}-\gamma \sum _{j\ne i}^{N}e_{j}^{ NL}+ \delta \int _{\Theta }\left( \kappa _{i,1}^{ NL}(\xi _{i})\right) \mu (\theta )\xi (\theta ){\mathbf {d}}\theta \right) . \end{aligned}$$
(52)

Plugging (52) into (50) gives the following system of equations

$$\begin{aligned} {\kappa _{i,2}^{ NL}}(\xi _{1},\ldots ,\xi _{N})&= \alpha _{i}e_{i}-e_{i}^{2}-\gamma e_{i}\sum _{j\ne i}^{N}e_{j}+\delta \int _{\mathcal {H}} \left( \kappa _{i,1}^{ NL}(\xi _{i})\eta \left( \sum _{j=1}^{N}e_{j}\right) \right. \nonumber \\&\left. +\,{\kappa _{i,2}^{ NL}}(\xi _{1},\ldots ,\xi _{N})\right) \left( \int _{\Theta } \phi (\eta |\theta )\xi _{i}(\theta ){\mathbf {d}}\theta \right) {\mathbf {d}}\eta , \end{aligned}$$
(53)

and

$$\begin{aligned} {\kappa _{i,1}^{ NL}}(\xi _{i})=-\beta _{i}+\delta d\int _{\Theta }{\kappa _{i,1}^{ NL}}(\xi _{i})\left( \int _{\mathcal {H}} \eta \phi (\eta |\theta ){\mathbf {d}}\eta \right) \xi _{i}(\theta ) {\mathbf {d}}\theta , \end{aligned}$$
(54)

or

$$\begin{aligned} \kappa _{i,1}^{ NL}(\xi _{i})=-\beta _{i}+\delta d\int _{\Theta }\kappa _{i,1}^{ NL}(\xi _{i})\mu (\theta )\xi _{i}(\theta ) {\mathbf {d}}\theta . \end{aligned}$$
(55)

We now show that \(\kappa _{i,1}^{ NL}(\xi _{i})=\frac{-\beta _{i}}{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }.\) Inserting this guessed form into (55), we get

$$\begin{aligned} \kappa _{i,1}^{ NL}(\xi _{i})&= -\beta _{i}-\beta _{i}\delta d\int _{\mathcal {H}}\frac{1}{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta } \eta \left( \int _{\Theta }\phi (\eta |\theta )\xi _{i}(\theta ){\mathbf {d}} \theta \right) {\mathbf {d}}\eta ,\end{aligned}$$
(56)
$$\begin{aligned}&= -\beta _{i}-\beta _{i}\delta d\frac{\int _{\Theta }\left( \int _{\mathcal {H}}\eta \phi (\eta |\theta ) {\mathbf {d}}\eta \right) \xi _{i}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }, \end{aligned}$$
(57)
$$\begin{aligned}&= -\beta _{i}-\beta _{i}\delta \frac{\int _{\Theta }\mu (\theta ) \xi _{i}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }, \end{aligned}$$
(58)
$$\begin{aligned}&= -\beta _{i}\left( \frac{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }{ 1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta } +\frac{\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}} \theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta )\mathbf {d }\theta }\right) , \end{aligned}$$
(59)
$$\begin{aligned}&= \frac{-\beta _{i}}{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }. \end{aligned}$$
(60)

To complete the proof, rewrite (51) as a function of total emissions, i.e.,

$$\begin{aligned} \alpha _{i}-\left( 2-\gamma \right) {e_{i}^{ NL}}- \gamma \sum _{j=1}^{N}{e_{j}^{ NL}}-\delta \frac{\beta _{i}\int _{\Theta } \mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }=0. \end{aligned}$$
(61)

We first solve for \(\sum _{j=1}^{N}{e_{j}^{ NL}}\), then for \({e_{i}^{ NL}}\). Summing (61) over \(i\) yields

$$\begin{aligned} \sum _{i=1}^{N}\alpha _{i}-\left( 2-\gamma \right) \sum _{i=1}^{N}{e_{i}^{ NL}} -\gamma N\sum _{j=1}^{N}e_{j}^{ NL}-\delta \sum _{i=1}^{N}\frac{ \beta _{i}\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }=0. \end{aligned}$$
(62)

So total emissions is given by

$$\begin{aligned} \sum _{j=1}^{N}e_{j}^{ NL}=\frac{1}{2+\left( N-1\right) \gamma } \left( \sum _{i=1}^{N}\alpha _{i}-\delta \sum _{i=1}^{N}\frac{\beta _{i} \int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta }\right) . \end{aligned}$$
(63)

Plugging this back in (61) yields

$$\begin{aligned} {e_{i}^{ NL}}&= \frac{1}{2-\gamma }\left( \alpha _{i}- \frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right. \nonumber \\&\left. -\delta \left( \beta _{i}\frac{\int _{\Theta }\mu (\theta )\xi _{i}(\theta ) {\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta ){\mathbf {d}} \theta }-\frac{\gamma \sum _{j=1}^{N}\beta _{j}\frac{\int _{\Theta } \mu (\theta )\xi _{j}(\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta ){\mathbf {d}}\theta }}{2+\left( N-1\right) \gamma }\right) \right) \end{aligned}$$
(64)

1.4 Proof of Proposition 4

We have

$$\begin{aligned} \sum _{i=1}^{N}\left( {e_{i}^{L}}-{e_{i}^{ NL}}\right)&= \frac{\delta }{2+\left( N-1\right) \gamma }\left( \sum _{i=1}^{N} \beta _{i}\left[ R\left( \int _{\Theta }\xi _{i}(\theta )\mu (\theta ) {\mathbf {d}}\theta \right) \right. \right. \\&\left. \left. -\int _{\Theta }R(\mu (\theta ))\xi _{i}( \theta ){\mathbf {d}}\theta \right] \right) \end{aligned}$$

Since \(R\) is an increasing convex function, by Jensen’s inequality we have

$$\begin{aligned} \int _{\Theta }R(\mu (\theta ))\xi _{i}(\theta ){\mathbf {d}} \theta >R\left( \int _{\Theta }\xi _{i}(\theta )\mu (\theta ){\mathbf {d}} \theta \right) , \end{aligned}$$

that is, \(\sum _{i=1}^{N}\left( {e_{i}^{L}}-e_{i}^{A}\right) <0,\) or

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{L}}\left( S,\xi _{1},\ldots ,\xi _{N}\right) < \sum _{i=1}^{N}e_{i}^{A}\left( S,\xi _{1},\ldots ,\xi _{N}\right) . \end{aligned}$$

1.5 Proof of Proposition 5

If \(\beta _{i}=\beta \) and \(\xi _{i}(\theta )=\xi (\theta ),\,\forall i=1,\ldots ,N\), then

$$\begin{aligned} {e_{i}^{L}}(S;\xi _{i},\xi _{-i})&= \frac{1}{2-\gamma }\left( \alpha _{i}- \frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right) \nonumber \\&-\frac{\delta }{2-\gamma }\beta \left( 1-\frac{\gamma N}{2+\left( N-1\right) \gamma }\right) \int _{\Theta }\frac{\mu (\theta )\xi (\theta ) {\mathbf {d}}\theta }{1-\delta d\mu (\theta )}. \end{aligned}$$
(65)
$$\begin{aligned} {e_{i}^{ NL}}&= \frac{1}{2-\gamma }\left( \alpha _{i}- \frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right) \nonumber \\&-\frac{\delta }{2-\gamma }\beta \left( 1-\frac{\gamma N}{2+\left( N-1\right) \gamma }\right) \frac{\int _{\Theta }\mu (\theta ) \xi (\theta ){\mathbf {d}}\theta }{1-\delta d\int _{\Theta }\mu (\theta ) {\mathbf {d}}\theta }. \end{aligned}$$
(66)

Let \(R\left( x\right) =x\left( 1-\delta dx\right) ^{-1}\), then 

$$\begin{aligned} {e_{i}^{L}}\left( S,\xi _{1},\ldots ,\xi _{N}\right)&= \frac{1}{2-\gamma } \left( \alpha _{i}-\frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right) \\&-\frac{\delta \beta }{2-\gamma } \frac{2-\gamma }{2+\left( N-1\right) \gamma }\int _{\Theta }R(\mu (\theta )) \xi (\theta ){\mathbf {d}}\theta , \end{aligned}$$

and

$$\begin{aligned} {e_{i}^{ NL}}\left( S,\xi _{1},\ldots ,\xi _{N}\right)&= \frac{1}{2-\gamma } \left( \alpha _{i}-\frac{\gamma \sum _{j=1}^{N}\alpha _{j}}{2+\left( N-1\right) \gamma }\right) \\&-\frac{\delta \beta }{2-\gamma }\frac{2-\gamma }{ 2+\left( N-1\right) \gamma }\left( R\left( \int _{\Theta }\xi (\theta )\mu \left( \theta \right) {\mathbf {d}}\theta \right) \right) . \end{aligned}$$

Since \(0<\delta ,d<1\), and \(0<\mu (\theta )<1\), then \(R\) is an increasing convex function for acceptable values of our model parameters (\(R^{\prime }>0,\,R''>0,\,\forall x\in [0,1]\)), then by Jensen’s inequality we have

$$\begin{aligned} \int _{\Theta }R(\mu (\theta ))\xi (\theta ){\mathbf {d}} \theta >R\left( \int _{\Theta }\xi (\theta )\mu (\theta ){\mathbf {d}} \theta \right) , \end{aligned}$$

Since \(\frac{1}{2+\left( N-1\right) \gamma }\) is positive, then

$$\begin{aligned} {e_{i}^{L}}\left( S,\xi _{1},\ldots ,\xi _{N}\right) <{e_{i}^{ NL}} \left( S,\xi _{1},\ldots ,\xi _{N}\right) . \end{aligned}$$

1.6 Proof of Proposition 8

Let \(G\left( x\right) =\frac{1}{1-\delta dx}\), which is an increasing convex function for \(0<x<1\), then we can rewrite \({\kappa _{i,1}^{L}}(\xi _{i})\) and \( \kappa _{i,1}^{ NL}(\xi _{i})\) as follows

$$\begin{aligned} {\kappa _{i,1}^{L}}(\xi _{i})&= -\beta _{i}\int _{\Theta }\frac{\xi _{i} (\theta )}{1-\delta d\mu (\theta )}{\mathbf {d}}\theta =-\beta _{i} \int _{\Theta }G(\mu (\theta ))\xi _{i}(\theta ){\mathbf {d}}\theta ,\\ {\kappa _{i,1}^{ NL}}(\xi _{i})&= \frac{-\beta _{i}}{1-\delta d\int _{\Theta }\mu (\theta )\xi _{i}(\theta ){\mathbf {d}}\theta } =-\beta _{i}G\left( \int _{\Theta }\xi _{i}(\theta )\mu (\theta ) \mathbf {d}\theta \right) , \end{aligned}$$

then by Jensen’s inequality we have

$$\begin{aligned} \int _{\Theta }G(\mu (\theta ))\xi _{i}(\theta ){\mathbf {d}} \theta >G\left( \int _{\Theta }\xi _{i}(\theta )\mu (\theta ){\mathbf {d}} \theta \right) , \end{aligned}$$

that yields

$$\begin{aligned} \kappa _{i,1}^{ NL}(\xi _{i})>{\kappa _{i,1}^{L}}(\xi _{i}). \end{aligned}$$

1.7 Proof of Proposition 10

Let \(R\left( x\right) =x\left( 1-\delta dx\right) ^{-1}\) and \(u\left( x\right) =R\left( \mu \left( x\right) \right) \). Since, \(\mu \in \left[ 0,1 \right] ,\,R\) is increasing, and

$$\begin{aligned} \frac{\partial u}{\partial x}=\mu ^{\prime }R^{\prime }\Rightarrow {\left\{ \begin{array}{ll} \begin{array}{cc} \frac{\partial u}{\partial x}>0 &{} \quad \text{ if } \mu ^{\prime }>0 \\ \frac{\partial u}{\partial x}<0 &{} \quad \text{ if } \mu ^{\prime }<0 \end{array} \end{array}\right. }. \end{aligned}$$
(67)

Recall that the individual’s emissions for an non-learner player are given by equation 10, and the total emissions by

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{L}}=\frac{1}{2+\left( N-1\right) \gamma } \left( \sum _{i=1}^{N}\alpha _{i}-\delta \sum _{i=1}^{N}\beta _{i} \int _{\Theta }\xi _{i}(\theta )R(\mu (\theta )){\mathbf {d}}\theta \right) . \end{aligned}$$
(68)

Using definition 1 and conditions (67), confirm the results for an non-learner player.

For the adaptive-learning case, an individual’s emissions are given by (14), and the total emissions are as follows:

$$\begin{aligned} \sum _{i=1}^{N}{e_{i}^{ NL}}=\frac{1}{2+\left( N-1\right) \gamma } \left( \sum _{i=1}^{N}\alpha _{i}-\delta \sum _{i=1}^{N}\beta _{i} R\left( \int _{\Theta }\xi _{i}(\theta )\mu (\theta ){\mathbf {d}} \theta \right) \right) . \end{aligned}$$
(69)

Besides, if \({\xi _{i}^{1}}(\theta )\succ _{1}{\xi _{i}^{2}}\left( \theta \right) \), then \(\int _{\Theta }{\xi _{i}^{1}}(\theta )\mu (\theta )d \theta >\int _{\Theta }{\xi _{i}^{2}}(\theta )\mu (\theta )d\theta \) if \(\mu ^{\prime }>0\), which gives the results presented in the Proposition for the adaptive learner.

1.8 Proof of Proposition 12

We assumed \(\mu ^{\prime }>0\). If \(\mu ''\ge 0\), then since \(R\) is also increasing and convex, \(R(\mu (\theta ))\) would be an increasing convex function. Given that \({\xi _{i}^{1}}(\theta ) \succ _{2}{\xi _{i}^{2}}(\theta )\), we will have

$$\begin{aligned} -\int _{\Theta }R(\mu (\theta ))\xi _{i}(\theta ^{1})\mathbf { d}\theta \ge -\int _{\Theta }R(\mu (\theta ))\xi _{i}( \theta ^{2}){\mathbf {d}}\theta . \end{aligned}$$
(70)

Now, assume that \(\mu \) is a concave function, \(\mu ^{\prime \prime }\le 0\), and player \(i\)’s beliefs change from \({\xi _{i}^{1}}(\theta )\) to \({\xi _{i}^{2}}(\theta )\), with \({\xi _{i}^{1}}(\theta ) \succ _{2}{\xi _{i}^{2}}(\theta )\), that is, \(\theta ^{1}\) is less volatile than \(\theta ^{2}\) meaning that \(\theta ^{1}\succ _{2}\theta ^{2}\), then \(\mu \left( \theta ^{1}\right) \succ _{2}\mu \left( \theta ^{2}\right) \). Consequently, the inequality (70) is satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoudi, N., Santugini, M. & Zaccour, G. A Dynamic Game of Emissions Pollution with Uncertainty and Learning. Environ Resource Econ 64, 349–372 (2016). https://doi.org/10.1007/s10640-014-9873-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-014-9873-x

Keywords

JEL Classification

Navigation