Effect of Technology Change on \(\hbox {CO}_{2}\) Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis

Abstract

This paper employs two-stage input–output structural decomposition analysis (SDA) to identify the factors responsible for changes in Japan’s \(\hbox {CO}_{2}\) emissions for two periods: 1995–2000 and 2000–2005. First, the study decomposes the total change in \(\hbox {CO}_{2}\) emissions for each period to obtain the contribution of change in \(\hbox {CO}_{2}\) emissions per unit output \((\hbox {CO}_{2}\) emissions coefficient), change in technology (technology effect), and change in final demand. The study observed from the first-stage decomposition that emissions coefficient and final demand drive the change in the first period (1995–2000) while the technology effect drives the change in the second period (2000–2005). The high contribution of the technology effect is driven by activities of iron and steel; coke, refined petroleum and gas; road transportation; and electricity sectors. Having observed the trend of the technology effect across the two periods, the study carried out a second-stage decomposition on technology effect in the second period to examine the contribution of each sector and observed that chemical and pharmaceuticals; iron and steel; road transportation; and construction sectors are mainly responsible. In conclusion, improvement in technical efficiency especially at the industrial process level of each industry will help Japan achieve greater level of \(\hbox {CO}_{2}\) emissions reduction.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Annex 1 Countries include the industrialised countries that where members of the Organisation for Economic Co-operation and Development (OECD) in 1992, plus countries with economies in transition (the EIT parties), including the Russian Federation, the Baltic States, and several Central and Eastern States.

  2. 2.

    2007 and 2009 United Nations Climate Change conferences in Bali, Indonesia and Copenhagen, Denmark, respectively.

  3. 3.

    The amendment will enter into force after ratification by member states.

  4. 4.

    These are the most recent data on Japan.

  5. 5.

    The methodological underpinning of structural path analysis (SPA) involves carrying out a Taylor’s expansion of the Leontief inverse matrix, (I-A)\(^{-1}\), such that changes in key variables may be observed at the process level instead of country level aggregates. However, SPA is applied statically, so when combined with SDA as in structural path decomposition, it provides a robust method for tracing the path of change in variables over time. Methodological development of SPA can be found in Lenzen (2003). SPD and SPA are different from two-stage SDA which only performs a second-level decomposition of the effects obtained from the traditional SDA decomposition.

  6. 6.

    Equation (3) is obtained by substituting \({\varvec{L}}^{\mathbf{1}}= {\varvec{L}}^{\mathbf{0}}+\varvec{\varDelta } {\varvec{L}},\, f^{1}= f^{0}+ \varDelta f\), and \(\hat{\mathbf{e}}^{\mathbf{0}}= \hat{\mathbf{e}} ^{\mathbf{1}}-\varvec{\varDelta } \hat{\mathbf{e}}\) in Eq. (2) to get

    $$\begin{aligned} \varvec{\varDelta } \varvec{\varepsilon }&= \hat{\mathbf{e}}^{\mathbf{1}}({\varvec{L}}^{0}+\varvec{\varDelta } L)\left( {f^{0}+ \varDelta f} \right) -(\hat{\mathbf{e}}^{\mathbf{1}}-\varvec{\varDelta } \hat{{\varvec{e}}} ){\varvec{L}}^{\mathbf{0}}f^{0}\\&= \hat{\mathbf{e}}^{1}{\varvec{L}}^{\mathbf{0}}f^{0}+ \quad \hat{\mathbf{e}}^{\mathbf{1}}{\varvec{L}}^{\mathbf{0}}\varDelta f+\hat{\mathbf{e}}^{\mathbf{1}}\varvec{\varDelta } {\varvec{L}} f^{0}+\hat{\mathbf{e}}^{\mathbf{1}}\varvec{\varDelta } {\varvec{L}}\varDelta f-\hat{\mathbf{e}}^{\mathbf{1}}{\varvec{L}}^{\mathbf{0}}f^{0}+ \varvec{\varDelta } \hat{{\varvec{e}}}{\varvec{L}}^{\mathbf{0}}f^{0}\\&= \hat{\mathbf{e}}^{1}{\varvec{L}}^{\mathbf{0}}\varDelta f+\hat{\mathbf{e}}^{1}\varvec{\varDelta } {\varvec{L}}f^{0}+\hat{\mathbf{e}}^{1}\varvec{\varDelta } {\varvec{L}} \varDelta f+\varvec{\varDelta } \hat{{\varvec{e}}}{\varvec{L}}^{\mathbf{0}}f^{0}.\, \hbox {By rearranging we have}\\&= \varvec{\varDelta } \hat{{\varvec{e}}}{\varvec{L}}^{\mathbf{0}}f^{0}+\hat{\mathbf{e}}^{\mathbf{1}}\varvec{\varDelta } {\varvec{L}}f^{0}+\hat{\mathbf{e}}^{1}{\varvec{L}}^{\mathbf{0}}\varDelta f+\hat{\mathbf{e}}^{1}\varvec{\varDelta } {\varvec{L}}\varDelta f\\&= \varvec{\varDelta } \hat{{\varvec{e}}}{\varvec{L}}^{\mathbf{0}}f^{0}+\hat{\mathbf{e}}^{1}\varvec{\varDelta } {\varvec{L}}f^{0}+\hat{\mathbf{e}}^{\mathbf{1}}({\varvec{L}}^{0}+\varvec{\varDelta } {\varvec{L}})\varDelta f=\varvec{\varDelta } \hat{{\varvec{e}}}{\varvec{L}}^{\mathbf{0}}f^{0}+\hat{\mathbf{e}}^{\mathbf{1}}\varvec{\varDelta } {\varvec{L}}f^{0}+\hat{\mathbf{e}}^{\mathbf{1}}{\varvec{L}}^{\mathbf{1}}\varDelta f \end{aligned}$$

    Similarly, Eq. (4) is obtained by substituting \(\hat{\mathbf{e}} ^{\mathbf{1}}= \hat{\mathbf{e}}^{\mathbf{0}}+\varvec{\varDelta } \hat{{\varvec{e}}};\, {\varvec{L}}^{\mathbf{0}}={\varvec{L}}^{\mathbf{1}}- \varvec{\varDelta } {\varvec{L}}\), and \(f^{0}= f^{1}- \varDelta f\) into Eq. (2)

  7. 7.

    For example the first term in Eq. (3) i.e. \(\varvec{\varDelta } \hat{{\varvec{ e}}}{\varvec{L}}^{\mathbf{0}}f^{0}\) captures the effect of change \(\hbox {CO}_{2}\) emissions coefficient relative the technological structure and final demand of year 0 while the first term in Eq. (4) i.e. \(\varvec{\varDelta } \hat{{\varvec{e}}} {\varvec{L}}^{\mathbf{1}}f^{1}\) captures the effect of change in \(\hbox {CO}_{2}\) emissions coefficient relative to the technological structure and final demand of year 1.

  8. 8.

    Dividing a matrix by a constant implies dividing each element in the matrix by the constant.

  9. 9.

    The final demand pattern refers to the overall change in the final demand component of the the input–output matrix which may be as a result of change in the overall level of final demand or change in the relative proportions of expenditure on the various goods and services in the final-demand vector (the final-demand mix).

  10. 10.

    The table has been transposed for ease of presentation. The transposed rows are highlighted in the complete result in “Appendix B”. Observe that the totals in the last row in Table 3 are exactly the same as the values for coke, refined petroleum and gas; iron and steel; road transport; and electricity which are in bold in the technology effect column in Table 2.

  11. 11.

    Road transport; chemical and pharmaceutical; and construction sectors are discussed in subsequent paragraphs.

Abbreviations

\(\mathrm{CO}_{2}\) :

Carbon dioxide

GHG:

Greenhouse gas

GIO:

Greenhouse gas inventory office

GWEC:

Global wind energy council

IEA:

International Energy Agency

IDA:

Index decomposition analysis

IEEJ:

Institute of Energy Economics, Japan

JISF:

Japan iron and steel federation

KP:

Kyoto protocol

MOE:

Ministry of Environment

NIES:

National Institute for Environmental Studies

OECD:

Organization for Economic Co-operation and Development

SDA:

Structural decomposition analysis

UNFCCC:

United Nations Framework Convention on Climate Change

SPA:

Structural Path Analysis

SPD:

Structural Path Decomposition

References

  1. Ang B (2004) Decomposition analysis for policymaking in energy:which is the preferred method? Energy Policy 32:1131–1139

    Article  Google Scholar 

  2. Ang B, Choi K (1997) Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia index method. Energy 18(3):59–74

    Google Scholar 

  3. Bhattacharyya SC, Matsumura W (2010) Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis. Energy 35:3315–3322

    Article  Google Scholar 

  4. Bhattacharyya SC, Ussanarassamee A (2004) Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000. Energy Econ 26:765–781

    Article  Google Scholar 

  5. Butnar I, Llop M (2011) Structural decomposition analysis and input–output subsystems: changes in CO2 emissions of Spanish service sectors (2000–2005). Ecol Econ 70:2012–2019

    Article  Google Scholar 

  6. Casler SD, Rose A (1998) Carbon dioxide emissions in the US economy: a Structural decomposition analysis. Environ Resour Econ 11:349–363

  7. Chang YF, Lewis C, Lin SJ (2008) Comprehensive evaluation of industrial CO2 emission (1989–2004) in Taiwan by input–output structural decomposition. Energy Policy 36:2471–2480

    Article  Google Scholar 

  8. Chung H, Rhee H (2001) A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean Industries. Energy 26:15–30

    Article  Google Scholar 

  9. Cockerill R (2011) Greener steelmaking: cleaning up in steel production processes. Retrieved December 30, 2011, from GASWORLD: http://www.gasworld.com/features/special-features/greener-steelmaking-cleaning-up-in-steel-production-processes/5347.article

  10. De Haan M (2001) A structural decomposition analysis of pollution in the Netherlands. Econ Syst Res 13(2):181–196

    Article  Google Scholar 

  11. Dietzenbacher E, Los B (1998) Structural decomposition techniques: sense and sensitivity. Econ Syst Res 10(4):307–324

    Article  Google Scholar 

  12. GIO (2011). National greenhouse gas inventory report of Japan. Ministry of the Environment Japan. Greenhouse Gas Inventory Office. 2011. Retrieved December 15, 2011, from Greenhouse Gas Inventory Office of Japan: http://www-gio.nies.go.jp/aboutghg/nir/2011/NIR-JPN-2011-v4.0E.pdf

  13. GWEC (2006) Global Wind 2005 Report. Retrieved December 31, 2011, from Global Wind Energy Council: http://www.gwec.net/fileadmin/documents/Publications/GWEC-Global_Wind_05_Report_low_res_01.pdf

  14. Han X, Lakshmanan TK (1994) Structural changes and energy consumption in the Japanese economy 1975–1995: an input–output analysis. Energy J 15(3):165–188

    Article  Google Scholar 

  15. Hoekstra R, van der Bergh JJ (2003) Comparing structural and index decomposition analysis. Energy Econ 25:39–64

    Article  Google Scholar 

  16. Hoekstra R, van der Bergh JJ (2002) Structural decomposition of physical flow in the economy. Environ Resour Econ 23(3):357–378

    Article  Google Scholar 

  17. IEA (2011) World Energy Balances (Edition: 2011). ESDS International, University of Manchester. Retrieved December 31, 2011, from International Energy Agency. doi:10.5257/iea/web/2011

  18. IEEJ (2008) Revised kyoto protocol target achievement plan: overview and history of revision. Retrieved December 14, 2011, from Institute of Energy Economics, Japan. http://eneken.ieej.or.jp/en/data/pdf/443.pdf

  19. JISF (2011) Outline of course 50. Retrieved December 30, 2011, from Japan Iron and Steel Federation. http://www.jisf.or.jp/course50/outline/index_en.html

  20. Kagawa S, Inamura H (2001) The structural decomposition of energy consumption based on a hybrid rectangular input–output framework: Japan’s case. Econ Syst Res 13(4):339–363

    Article  Google Scholar 

  21. Kawai J (2001) Development of environmentally conscious steel products at the Nippon Steel Corporation. Mater Des 22:111–122

    Article  Google Scholar 

  22. Kiko N (2008) Greenhouse gas emission in Japan. Retrieved December 31, 2011, from Kiko Network. http://www.kikonet.org/english/publication/archive/japansGHGemission_E.pdf

  23. Kojima M, Bacon R (2009) Changes in CO2 emission from energy use: a multi-country decomposition analysis. Retrieved December 18, 2011, from Washington, DC: Oil, Gas and Mining Policy Division, The World Bank. http://siteresources.worldbank.org/EXTOGMC/Resources/co2_emissions1.pdf

  24. Lee CF, Lin SJ (2001) Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy 29(3):237–244

  25. Lenzen M (2003) Environmentally important paths, linkages and key sectors in the Australian economy. Struct chance Econ Dyn 14:1–34

  26. Lim H-J, Yoo S-H, Kwak S-J (2009) Industrial CO2 emissions from energy use in Korea: a structural decomposition analysis. Energy Policy 37:686–698

  27. Lin X, Polenske KR (1995) Input-Output anatomy of China’s energy use in the 1980s. Econ Syst Res 7(1):67–84

  28. Liu L-C, Fan Y, Wu G, Wei Y-M (2007) Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy 35:5892–5900

    Article  Google Scholar 

  29. Lu X, Xu J (2012) A new application of RAS structural decomposition approach in the regional economies of China, 2002–2007. Retrieved December 24, 2012, from International Input–Output Association: http://www.iioa.org/files/conference-3/751_20120229110_NewApplicationofRASStructuralDecompositionApproachintheRegionalEconomiesofChina2002--2007.pdf

  30. Luukkanen J, Kaivo-oja J (2002) ASEAN tigers and sustainability of energy use–decomposition analysis of energy and CO2 efficiency dynamics. Energy Policy 30:281–292

    Article  Google Scholar 

  31. Ma C, Stern D (2008) China’s changing energy intensity trend: a decomposition analysis. Energy Econ 30:1037–1053

    Article  Google Scholar 

  32. Miller RE, Blair PD (2009) Input–output analysis: foundations and extensions, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  33. MOE (2011) Japan’s National Greenhouse Gas Emission for Fiscal Year 2009. Retrieved December 18, 2011, from Ministry of Environment Japan. http://www.env.go.jp/en/headline/file_view.php?serial=412&hou_id=1580

  34. Mukhopahyay K (2001) An emperical analysis of the sources of CO2 emission changes in India. Asian J Energy Environ 2(3–4):233–271

    Google Scholar 

  35. NIES (2009) Japan’s National Greenhouse Gas Emissions for Fiscal Year 2009. Retrieved December 15, 2011, from National Institute for Environmental Studies Japan. http://www.nies.go.jp/whatsnew/2011/20110426/gaiyo-e.pdf

  36. OECD (2011) Input–output tables. Retrieved December 30, 2011, from Organization of Economic Co-operation and Development: http://www.oecd.org/document/3/0,3746,en_2649_34445_38071427_1_1_1_1,00.html

  37. Okushima S, Tamura M (2011) Identifying the sources of energy use change: multiple calibration decomposition analysis and structural decomposition analysis. Struct Change Econ Dyn 22:313–326

    Article  Google Scholar 

  38. Oshita Y (2012) Identifying critical supply chain paths that drive changes in CO2 emssions. Energy Econ 34(4):1041–1050

    Article  Google Scholar 

  39. Paul S, Bhattacharya R (2004) CO2 emission from energy use in India: a decomposition analysis. Energy Policy 32:585–593

    Article  Google Scholar 

  40. Peng Y, Shi C (2011) Determinants of carbon emission growth in China: a structural decomposition analysis. Energy Procedia 5:169–175

    Article  Google Scholar 

  41. Peters GP, Weber CL, Guan D, Hubacek K (2007) China’s growing CO2 emissions—a race between increasing consumption and efficiency gains. Environ Sci Tech 41(17):5939–5944

  42. Rose A, Casler S (1996) Input-output structural decomposition analysis: a critical apraisal. Econ Syst Res 8(1):33–62

    Article  Google Scholar 

  43. Rose A, Chen CY (1991) Sources of change in energy consumption in the U.S. Economy, 1972–1982: a structural decomposition analysis. Resour Energy 13(1):1–21

    Article  Google Scholar 

  44. Su B, Ang B (2012) Structural decomposition analysis applied to energy and emissions: some methodological developments. Energy Econ 34:177–188

    Article  Google Scholar 

  45. UNFCCC (2007) Bali climate change conference: December, 2007. Retrieved October 23, 2012, from United Nations Framework Convention on CLimate Change. http://unfccc.int/meetings/bali_dec_2007/meeting/6319.php

  46. UNFCCC (2009) Copenhagen climate change conference: December 2009. Retrieved October 23, 2012, from United Nations Framework Convention on Climate Change. http://unfccc.int/meetings/copenhagen_dec_2009/meeting/6295.php

  47. UNFCCC (2012) Doha climate change conference: November, 2012. Retrieved December 28, 2012, from United Nations Framework Convention on Climate Change. http://unfccc.int/meetings/doha_nov_2012/meeting/6815.php

  48. UNFCCC (2011) GHG emission profiles for Annex I Parties and major groups. Retrieved December 30, 2011, from United Nations Framework Convention on Climate Change. http://unfccc.int/ghg_data/ghg_data_unfccc/ghg_profiles/items/4625.php

  49. UNFCCC (1998) Kyoyo protocol to the United Nations framework convention on climate change. Retrieved December 18, 2011, from United Nations Framework Convention on CLimate Change. http://unfccc.int/resource/docs/convkp/kpeng.pdf

  50. van der Linden JA, Dietzenbacher E (2000) The determinants of structural change in the European Union: a new application of RAS. Environ Plan A 32(12):2205–2229

    Article  Google Scholar 

  51. Wier M (1998) Sources of changes in emissions from energy: a structural decomposition analysis. Econ Syst Res 10(2):99–112

    Article  Google Scholar 

  52. Wood R (2009) Structural decomposition analysis of Australia’s greenhouse gas emissions. Energy Policy 37:4943–4948

    Article  Google Scholar 

  53. Wood R, Lenzen M (2009) Structural path decomposition. Energy Econ 31:335–341

  54. Yabe N (2004) An analysis of CO2 emission of Japanese industries during the period 1985 and 1995. Energy Policy 32(5):595–610

    Article  Google Scholar 

  55. Yih FC, Lin SJ (1998) Structural decomposition of industrial CO2 emission in Taiwan: an input–output approach. Energy Policy 26(1):5–12

    Article  Google Scholar 

  56. Zhang H, Qi Y (2011) A structural decomposition analysis of China’s production-source CO2 emission: 1992–2002. Environ Resour Econ 49:65–77

    Article  Google Scholar 

  57. Zhang Y (2009) Structural decomposition analysis of sources of decarbonizing economic development in China. Ecol Econ 68:2399–2405

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uduak S. Akpan.

Appendices

Appendix A

See Table 4.

Table 4 Classification of sectors

Appendix B

See Table 5.

Table 5 Second stage decomposition of technology effect of all the sectors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akpan, U.S., Green, O.A., Bhattacharyya, S. et al. Effect of Technology Change on \(\hbox {CO}_{2}\) Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis. Environ Resource Econ 61, 165–189 (2015). https://doi.org/10.1007/s10640-014-9787-7

Download citation

Keywords

  • \(\hbox {CO}_{2}\) emissions
  • Input–output
  • Structural decomposition analysis
  • Technology change
  • Japan